[1] Long A M, Richards M G, Hastings D E. On-orbit servicing: a new value proposition for satellite design and operation[J]. Journal of Spacecraft and Rockets, 2007, 44(4): 964-976.
[2] Komanduri A S, Bindel D, Da F M. Guidance and control strategies for a spacecraft to rendezvous with a non-cooperative spacecraft[C]//Proceeding of the 61st International Astronautical Congress. Paris, France: International Astronautical Federation, 2010: 5982-5991.
[3] Segal S, Gurfil P. Effect of kinematic rotation-translation coupling on relative spacecraft translational dynamics[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(3): 1045-1050.
[4] Utkin V I, Poznyak A S. Adaptive sliding mode control with application to super-twist algorithm: equivalent control method[J]. Automatica, 2013, 49(1): 39-47.
[5] Shtessel Y, Taleb M, Plestan F. A novel adaptive-gain supertwisting sliding mode controller: methodology and application[J]. Automatica, 2012, 48(5): 759-769.
[6] Jia J, Yao Y, Ma K M. Continuous optimal terminal proximity guidance algorithm for autonomous rendezvous and docking[J]. Information Technology Journal, 2013, 12(5): 1011-1017.
[7] Gao X Y, Teo K L, Duan G R. An optimal control approach to robust control of nonlinear spacecraft rendezvous system with θ-D technique[J]. International Journal of Innovative Computing, Information and Control, 2013, 9(5): 2099-2110.
[8] Utkin V. About second order sliding mode control, relative degree, finite-time convergence and disturbance rejection[C]//Proceeding of 2010 11th International Workshop on Variable Structure Systems. Piscataway, NJ: IEEE Press, 2010: 528-533.
[9] Wilfrid P, Jean P B. Sliding mode control in engineering[M]. New York: Marcel Dekker, 2002: 51-99.
[10] Gonzalez T, Moreno J A, Fridman L. Variable gain super-twisting sliding mode control[J]. IEEE Transactions on Automatic Control, 2012, 57(8): 2100-2105.
[11] Levant A. Sliding order and sliding accuracy in sliding mode control[J]. International Journal of Control, 1993, 58(6): 1247-1263.
[12] Levant A. Principles of 2-sliding mode design[J]. Automatica, 2007, 43(4): 576-586.
[13] Pukdeboon C. Second-order sliding mode controllers for spacecraft relative translation[J]. Applied Mathematical Sciences, 2012, 6(100): 4965-4979.
[14] Pan H, Kapila V. Adaptive nonlinear control for spacecraft formation flying with coupled translational and attitude dynamics[C]//Proceeding of the 40th IEEE Conference on Decision and Control. Piscataway, NJ: IEEE Press, 2001: 2057-2062.
[15] Segal S, Gurfil P. Shape-generalized modeling of relative spacecraft translation, AIAA-2009-6093[R]. Reston: AIAA, 2009.
[16] Moreno J A. A linear framework for the robust stability analysis of a generalized super-twisting algorithm[C]//Proceeding of the 2009 6th International Conference on Electrical Engineering, Computing Science and Automatic Control. Piscataway, NJ: IEEE Press, 2009: 1-6.
[17] Lu W, Geng Y H, Chen X Q, et al. Coupled control of relative position and attitude for on-orbit servicing spacecraft with respect to target[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(5): 857-865 (in Chinese). 卢伟, 耿云海, 陈雪芹, 等. 在轨服务航天器对目标的相对位置和姿态耦合控制[J]. 航空学报, 2011, 32(5): 857-865. |