[1] Baba S, Sato H, Huang L, et al. Formation and characterization of polyethylene terephthalate-based (Bi0.15Sb0.85)2Te3 thermoelectric modules with CoSb3 adhesion layer by aerosol deposition[J]. Journal of Alloys and Compounds, 2014, 589: 56-60.[2] Itoigawa K, Ueno H, Shiozaki M, et al. Fabrication of flexible thermopile generator[J]. Journal of Micromechanics and Microengineering, 2005, 15(9): S233-S238.[3] Gao M, Zhang J S. Thermoelectric conversion and its application[M]. Beijing: Weapons Industry Press, 1996: 292-293. (in Chinese) 高敏, 张景韶. 温差电转换及其应用[M]. 北京: 兵器工业出版社, 1996: 292-293.[4] Francioso L, De Pascali C, Siciliano P, et al. Thin film technology flexible thermoelectric generator and dedicated ASIC for energy harvesting applications[C]//2013 5th IEEE International Workshop on Advance in Sensors and Interfaces, 2013: 104-107.[5] He Y J, Chen H, Chen M X. Thermoelectric electricity generation——a new green energy technology[J]. Engineering Physics, 2000, 10(2): 36-41. (in Chinese) 何元金, 陈宏, 陈默轩. 温差发电——一种新型绿色的能源技术[J]. 工科物理, 2000, 10(2): 36-41.[6] Fan P, Zheng Z H, Zhang D P, et al. Latest progress of thermoelectric thin films and thin film thermoelectric generators[J]. Chinese Journal of Vacuum Science and Technology, 2012, 32(8): 700-704. (in Chinese) 范平, 郑壮豪, 张东平, 等. 热电薄膜与薄膜温差电池研究进展[J]. 真空科学与技术学报, 2012, 32(8): 700-704.[7] Shi W, Zhong W, Yu D B. Research progress of micro thermoelectric devices[J]. Material Review, 2010, 24(4): 44-46. (in Chinese) 施文, 钟武, 余大斌. 微型热电器件的研究进展[J]. 材料导报, 2010, 24(4): 44-46.[8] Zhao W Y, Fan S F, Xiao N, et al. Flexible carbon nanotube papers with improved thermoelectric properties[J]. Energy & Environmental Science, 2012, 5(1): 5364-5369.[9] Zhang G Q, Yu Q X, Wang W, et al. Nanostructures for thermoelectric applications: synthesis, growth mechanism, and property studies[J]. Advanced Materials, 2010, 22(17): 1959-1962.[10] Hsiao C C, Wu Y S. Fabrication of flexible thin-film thermoelectric generators[J]. Journal of the Chinese Institute of Engineers, 2011, 34(6): 809-816.[11] Chen M, Liao B, Kong D W. The latest development of thermoelectric microdevices based on MEMS technology[J]. Microelectronics, 2004, 34(1): 7-12. (in Chinese) 陈民, 廖波, 孔德文. 基于MEMS技术的微热电器件的研究进展[J]. 微电子学, 2004, 34(1): 7-12.[12] Bell L E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems[J]. Science, 2008, 321(5895): 1457-1461.[13] Liu X Y, Ren S, Wen L S. Progress in application and fabrication of micro thermoelectric device[J]. Material Review, 2007, 21(3): 5-9. (in Chinese) 刘向阳, 任山, 闻立时. 微型热电器件研究进展[J]. 材料导报, 2007, 21(3): 5-9.[14] Vining C B. An inconvenient truth about thermo--electric[J]. Nature Materials, 2009, 8(2): 83-85.[15] Liu D W, Li L L, Li J F. The latest research progress in the applications of thermoelectric microdevices[J]. Sciencepaper Online, 2011, 6(8): 574-578. (in Chinese) 刘大为, 李亮亮, 李敬锋. 微型热电器件应用的最新研究进展[J]. 中国科技论文在线, 2011, 6(8): 574-578.[16] Yu C, Choi K, Yin L, et al. Light-weight flexible carbon nanotube based organic composites with large thermoelectric power factors[J]. ACS Nano, 2011, 5(10): 7885-7892.[17] Venkatasubramanian R, Siivola E, Colpitts T, et al. Thin-film thermoelectric devices with high room-temperature figures of merit[J]. Nature, 2001, 413(6856): 597-602.[18] Liang D X, Yang H R, Finefrock S W, et al. Flexible nanocrystal-coated glass fibers for high-performance thermoelectric energy harvesting[J]. Nano Letters, 2012, 12(4): 2140-2145.[19] Mu W D. Fabrication of Bi2Te3-based thermoelectric thin films and study on the performances[D]. Changsha: National University of Defense Technology, 2009. (in Chinese) 穆武第.碲化铋基热电薄膜制备及其热电性能研究[D]. 长沙: 国防科学技术大学, 2009.[20] Delaizir G, Monnier J, Soulier M, et al. A new generation of high performance large-scale and flexible thermogenerators based on (Bi,Sb)2(Te,Se)3 nano-powders using the spark plasma sintering technique[J]. Sensors and Actuators A: Physical, 2012, 174: 115-122.[21] Rushing L, Shakouri A, Abraham P, et al. Micro thermoelectric coolers for integrated applications [C]//Proceedings of 16th International Conference on Thermoelectrics (ICT'97), 1997: 646-649.[22] Li H Y, Zhou Y, Liu J. Liquid metal based printable thermoelectronic generator and its performance evaluation[J]. Scientia Sinica Technologica, 2014, 44(4): 407-416. (in Chinese) 李海燕, 周远, 刘静. 基于液态金属的可印刷式热电发生器及其性能评估[J]. 中国科学:技术科学, 2014, 44(4): 407-416.[23] Jin R G, Hua Y Q. Polymer physics[M]. Beijing: Chemical Industry Press, 2006: 132-143. (in Chinese) 金日光, 华幼卿. 高分子物理[M]. 北京: 化学工业出版社, 2006: 132-143.[24] Gao J G, Li Y X. Polymer materials[M]. Beijing: Chemical Industry Press, 2002: 143-145. (in Chinese) 高俊刚, 李源勋. 高分子材料[M]. 北京: 化学工业出版社, 2002: 143-145.[25] Ren D H, Lu K, Dai Z Y, et al. Latest development of micro thermoelectric cooler based on MEMS[J]. Journal of Mechanical Engineering, 2010, 46(8): 114-120. (in Chinese) 任大海, 卢 凯, 戴震宇, 等. 基于微机电系统技术的微型热电致冷器研究进展[J]. 机械工程学报, 2010, 46(8): 114-120.[26] Yang M B, Tang Z Y. Handbook of polymer materials[M]. Beijing: Chemical Industry Press, 2009: 253-331. (in Chinese) 杨鸣波, 唐志玉. 高分子材料手册[M]. 北京: 化学工业出版社, 2009: 253-331.[27] Hu Z B. Insulation materials technology[M]. Beijing: Chemical Industry Press, 2005: 11-13. (in Chinese) 胡兆斌. 绝缘材料工艺学[M]. 北京: 化学工业出版社, 2005: 11-13.[28] Bubnova O, Crispin X. Towards polymer-based organic thermoelectric generators[J]. Energy & Environmental Science, 2012, 5(11): 9345-9362.[29] Madan D, Wang Z, Chen A, et al. High-performance dispenser printed MA p-Type Bi0.5Sb1.5Te3 flexible thermoelectric generators for powering wireless sensor networks[J]. ACS Applied Materials & Interfaces, 2013, 5(22): 11872-11876.[30] Cheng L, Liu H J, Tan X J, et al. Thermoelectric properties of a monolayer bismuth[J]. The Journal of Physical Chemistry C, 2014, 118(2): 904-910.[31] Qu W, Ploetner M, Fischer W J. Microfabrication of thermoelectric generators on flexible foil substrates as apower source for autonomous microsystems[J]. Journal of Micromechanics and Microengineering, 2001, 11(2): 146-152.[32] Naoki T, Nattha J, Hiromasa M. Organic thermoelectric materials composed of conducting polymers and metal nanoparticles[J]. Journal of Electronic Matrials, 2012, 41(6): 1735-1742.[33] Zhang Q L. Preparation and thermoelectrical performance of polyaniline nanocomposities[D]. Shanghai: Donghua University, 2012. (in Chinese) 张庆丽. 聚苯胺纳米复合材料的制备及热电性能研究[D]. 上海: 东华大学, 2012.[34] Yue R, Xu J. Poly(3,4-ethylenedioxythiophene) as promising organic thermoelectric materials: A mini-review[J]. Synthetic Metals, 2012, 162(11-12): 912-917.[35] Shi H, Liu C C, Xu J K, et al. Facile fabrication of PEDOT: PSS/Polythiophenes bilayered nanofilms on pure organic electrodes and their thermoelectric performance[J]. ACS Applied Materials & Interfaces, 2013, 5(24): 12811-12819.[36] Scholdt M, Do H, Lang J, et al. Organic semiconductors for thermoelectric applications[J]. Journal of Electronic Materials, 2010, 39(9): 1589-1592.[37] He M, Qiu F, Lin Z Q. Towards high-performance polymer-based thermoelectric materials[J]. Energy and Environmental Science, 2013, 6(5): 1352-1361.[38] Piao M, Na J, Choi J, et al. Increasing the thermoelectric power generated by composite films using chemically functionalized single-walled carbon nanotubes[J]. Carbon, 2013, 62: 430-437.[39] Suemori K, Hoshino S, Kamata T. Flexible and lightweight thermoelectric generators composed of carbon nanotube-polystyrene composites printed on film substrate[J]. Applied Physics Letters, 2013, 103(15): 1-4.[40] Moriarty G P, De S, King P J, et al. Thermoelectric behavior of organic thin film nanocomposites[J]. Journal of Polymer Science Part B: Polymer Physics, 2013, 51(2): 119-123.[41] Ho M C, Chao C H, Lo A Y, et al. Significant improvement in the thermoelectric properties of zwitterionic polysquaraine composite films[J]. Materials Chemistry and Physics, 2013, 141(2): 920-928.[42] He M, Ge J, Lin Z Q, et al. Thermopower enhancement in conducting polymer nanocomposites via carrier energy scattering at the organic-inorganic semiconductor interface[J]. Energy & Environmental Science, 2012, 5(8): 8351-8358.[43] Shi C X, Li H D, Zhou L. Materials science and engi-neering handbook[M]. Beijing: Chemical Industry Press, 2004: 10-95. (in Chinese) 师昌绪, 李恒德, 周廉. 材料科学与工程手册[M].北京: 化学工业出版社, 2004: 10-95.[44] Zheng W T. Thin-film materials and technology[M]. Beijing: Chemical Industry Press, 2007: 11-47. (in Chinese) 郑伟涛. 薄膜材料与薄膜技术[M]. 北京: 化学工业出版社, 2007: 11-47.[45] Milton O. Materials science of thin films[M]. New York:Academic Press, 2013: 49-51.[46] Zou H L, Rowe D M, Min G. Growth of p-and n-type bismuth telluride thin films by co-evaporation[J]. Journal of Crystal Growth, 2001, 222(1-2): 82-87.[47] Mizoshiri M, Mikami M, Ozaki K. p-Type Sb2Te3 and n-Type Bi2Te3 films for thermoelectric modules deposited by thermally assisted sputtering method[J]. Japanese Journal of Applied Physics, 2013, 52(6S): 1-5.[48] Francioso L, De Pascali C, Farella I, et al. Flexible thermoelectric generator for ambient assisted living wearable biometric sensors[J]. Journal of Power Sources, 2011, 196(6): 3239-3243.[49] Yang Y, Lin Z H, Hou T, et al. Nanowire-composite based flexible thermoelectric nanogenerators and self-powered temperature sensors[J]. Nano Research, 2012, 5(12): 888-895.[50] Kwon S D, Ju B, Yoon S J, et al. Fabrication of bismuth telluride-based alloy thin film thermoelectric devices grown by metal organic chemical vapor deposition[J]. Journal of Electronic Materials, 2009, 38(7): 920-924.[51] Glatz W, Muntwyler S, Hierold C. Optimization and fabrication of thick flexible polymer based micro thermoelectric generator[J]. Sensors and Actuators A, 2006, 132(1): 337-345.[52] Shi M, Wu G J. Semiconductor device physics[M]. Xi'an: Xi’an Jiaotong University Press, 2008: 22-31. (in Chinese) 施敏, 伍国珏. 半导体器件物理[M]. 西安: 西安交通大学出版社, 2008: 22-31.[53] Zhou Z, Wang Y Y, Sharp J, et al. Optimal thermo-electric figure of merit in Bi2Te3/Sb2Te3 quantum dot nanocomposites[J]. APS Physics, 2012, 3: 1-39.[54] Weber J, Potje-Kamloth K, Haase F, et al. Coin-size coiled-up polymer foil thermoelectric power generator for wearable electronics[J]. Sensors and Actuators A: Physical, 2006, 132(1): 325-330.[55] Yadav A, Pipe K P, Shtein M. Fiber-based flexible thermoelectric power generator[J]. Journal of Power Sources, 2008, 175(2): 909-913. |