[1] Nagato K, Ide T, Ohno N, et al. Automatic unbalance correction of rotors by sympathetic phase inversion of ultraviolet-curing resin[J]. Precision Engineering, 2009, 33(3): 243-247.[2] Mehdi B, Mehdi A, David M, et al. A finite element based algorithm for rubbing induced vibration prediction in rotors[J]. Journal of Sound and Vibration, 2013, 332(21): 5523-5542.[3] Kim T, Na S. New automatic ball balancer design to re-duce transient-response in rotor system[J]. Mechanical Systems and Signal Processing, 2013, 37(1-2): 265-275.[4] Bouaziz S, Messaoud N B, Choley J Y, et al. Transient response of a rotor AMBs system connected by a flexible mechanical coupling[J]. Mechatronics, 2013, 23(6): 573-580.[5] Blake M P, Mitchell W S. Vibration and acoustic measurement handbook[M]. New York: Spartan Books, 1972: 7-16.[6] Yue C, Ren X M, Deng W Q, et al. Multi-plane and multi-critical transient dynamic balance method based on rising speed response information of flexible rotor system[J]. Journal of Aerospace Power, 2013, 28(11): 2593-2599. (in Chinese) 岳聪, 任兴民, 邓旺群, 等. 基于升速响应信息柔性转子系统的多阶多平面瞬态动平衡方法[J]. 航空动力学报, 2013, 28(11): 2593-2599.[7] Huang J P, Ren X M, Deng W Q, et al. Two-plane balancing of flexible rotor based on accelerating unbalancing response data[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(2): 400-409. (in Chinese) 黄金平, 任兴民, 邓旺群, 等. 基于不平衡加速响应信息的柔性转子双面平衡[J]. 航空学报, 2010, 31(2): 400-409.[8] Jaroslav Z, Petr F. A computational investigation on the reducing lateral vibration of rotors with rolling-element bearings passing through critical speeds by means of tuning the stiffness of the system supports[J]. Mechanism and Machine Theory, 2011, 46(5): 707-724.[9] Caprani C C. A modal precise integration method for the calculation of footbridge vibration response[J]. Computers & Structures, 2013, 28: 116-127.[10] Li Q H, Chen S S, Kou G X. Transient heat conduction analysis using the MLPG method and modified precise time step integration method[J]. Journal of Computational Physics, 2011, 230(7): 2736-2750.[11] Liu Q M, Zhang J, Yan L B. A numerical method of calculating first and second derivatives of dynamic response based on Gauss precise time step integration method[J]. European Journal of Mechanics, 2010, 29(3): 370-377.[12] Gu J L, Ding K Y, Liu Q Z, et al. Rotor dynamic[M]. Beijing: National Defence Industry Press, 1988: 51-58. (in Chinese) 顾家柳, 丁奎元, 刘启洲, 等. 转子动力学[M]. 北京: 北京国防工业出版社, 1988: 51-58.[13] Zhong W X. On precise time-integration method for structural dynamics[J]. Journal of Dalian University of Technology, 1994, 34(2): 131-136. (in Chinese) 钟万勰. 结构动力方程的精细时程积分法[J]. 大连理工大学学报, 1994, 34(2): 131-136.[14] Xiang Y, Huang Y Y, Zeng G W. Error analysis and accuracy design for the precise time-integration method[J]. Chinese Journal of Computational Mechanics, 2009, 19(3): 276-280.(in Chinese) 向宇, 黄玉盈, 曾革委. 精细时程积分法的误差分析与精度设计[J]. 计算力学学报, 2009, 19(3): 276-280.[15] Zhang J F, Deng Z C. Dimensional increment and partitioning precise integration method for structural dynamic equation[J]. Journal of Vibration and Shock, 2008, 27(12): 88-90. (in Chinese) 张继锋, 邓子辰. 结构动力方程的增维分块精细积分法[J]. 振动与冲击, 2008, 27(12): 88-90.[16] Wensch J, Däne M, Hergert W, et al. The solution of stationary ODE problems in quantum mechanics by Magnus methods with stepsize control[J]. Computer Physics Communications, 2004, 160(2): 129-139. |