[1] Cai H, Hu Z D, Cao Y. A survey of guidance law with terminal impact angle constraints[J]. Journal of Astronautics, 2010, 31(2): 315-323. (in Chinese) 蔡洪, 胡正东, 曹渊. 具有终端角度约束的导引律综述[J]. 宇航学报, 2010, 31(2): 315-323.[2] Ratnoo A, Ghose D. Impact angle constrained guidance against nonstationary nonmaneuvering targets[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(1): 269-275.[3] Erer K S, zgren M K. Control of impact angle using biased proportional navigation, AIAA-2013-5113. Reston: AIAA, 2013.[4] Lee J I, Jeon I S, Tahk M J. Guidance law to control impact time and angle[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(1): 301-310.[5] Zhang Y A, Huang J, Sun Y P. Generalized weighted optimal guidance laws with impact angle constraints[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(3): 848-856. (in Chinese) 张友安, 黄诘, 孙阳平. 带有落角约束的一般加权最优制导律[J]. 航空学报, 2014, 35(3): 848-856.[6] Hu Z D, Cao Y, Cai H. Variable structure guidance law of reentry maneuvering warhead with terminal angular constraint[J]. Systems Engineering and Electronics, 2009, 31(2): 393-398. (in Chinese) 胡正东, 曹渊, 蔡洪. 带落角约束的再入机动弹头的变结构导引律[J]. 系统工程与电子技术, 2009, 31(2): 393-398.[7] Harl N, Balakrishnan S N. Impact time and angle guidance with sliding mode control[J]. IEEE Transactions on Control Systems Technology, 2012, 20(6): 1436-1449.[8] Lin B, Meng X Y, Liu Z Z. Design of the robust guidance law with terminal angle constraint[J]. Systems Engineering and Electronics, 2005, 27(11): 1943-1945. (in Chinese) 林波, 孟秀云, 刘藻珍. 具有末端角约束的鲁棒制导律设计[J]. 系统工程与电子技术, 2005, 27(11): 1943-1945.[9] Guo J G, Zhou J. Design of H∞ guidance law with terminal angle constraint[J]. Fire Control & Command Control, 2009, 34(12): 44-46. (in Chinese) 郭建国, 周军. 具有终端角度约束的H∞制导律设计[J]. 火力与指挥控制, 2009, 34(12): 44-46.[10] Hu Z D, Guo C F, Cai H. Integrated guidance law of reentry maneuvering warhead with terminal angular constraint[J]. Journal of National University of Defense Technology, 2008, 30(3): 21-26. (in Chinese) 胡正东, 郭才发, 蔡洪. 带落角约束的再入机动弹头的复合导引律[J]. 国防科技大学学报, 2008, 30(3): 21-26.[11] Xin M, Balakrishnan S N, Ohlmeyer E J. Guidance law design for missiles with reduced seeker field-of-view, AIAA-2006-6085. Reston: AIAA, 2006.[12] Sang D, Ryoo C K, Song K R, et al. A guidance law with a switching logic for maintaining seeker's lock-on for stationary targets, AIAA-2008-6497. Reston: AIAA, 2008.[13] Gu J L, Chen W C. Homing guidance with look angle and impact angle constraints[J]. Journal of Astronautics, 2013, 34(6): 782-787. (in Chinese) 顾家立, 陈万春. 一种带导引头视角和落角约束的导引方法[J]. 宇航学报, 2013, 34(6): 782-787.[14] Vinh N X. Optimal trajectories in atmospheric flight[M]. New York: Elsevier Scientific Software, 1981: 26-27.[15] Zhou D, Sun S, Teo K L. Guidance laws with finite time convergence[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(6): 1838-1846.[16] Xu Z C, Wang Z S, Wang Y J. Optimal control of nonlinear system based on linear extended state observer//Proceedings of the 30th Chinese Control Conference, 2011: 97-101. (in Chinese) 许志才, 王志燊, 王永骥. 基于线性扩张状态观测器的非线性系统最优控制//第30届中国控制会议, 2011: 97-101.[17] Lin Z L, Saberi A. Semi-global exponential stabilization of linear discrete-time systems subject to input saturation via linear feedbacks[J]. Systems & Control Letters, 1995, 24(2): 125-132.[18] Zhou B, Duan G R, Lin Z L. A parametric Lyapunov equation approach to the design of low gain feedback[J]. IEEE Transactions on Automatic Control, 2008, 53(6): 1548-1554.[19] Corless R M, Gonnet G H, Hare D E G, et al. On the Lambert W-function[J]. Advances in Computational Mathematics, 1996, 5(4): 329-359. |