[1] 王锐. 激光红外主被动复合导引系统[J]. 中国光学, 2013, 6(4):536-543. WANG R. Compound guidedsystem with active laserimaging and passive infrared imaging[J]. Chinese Optics, 2013, 6(4):536-543(in Chinese).[2] 姬伟, 李奇. 陀螺稳定平台视轴稳定系统自适应模PID控制[J]. 航空学报, 2007, 28(1):191-195. JI W, LI Q. Adaptive fuzzy PID control for LOS stabilization system on gyro stabilized platform[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(1):191-195(in Chinese).[3] 王广雄, 何朕. 控制系统设计[M]. 北京:清华大学出版社, 2008:51-77. WANG G X, HE Z. Control system design[M]. Beijing:Tsinghua University Press, 2008:51-77(in Chinese).[4] TIAN D P, SH H H, DAI M. Improving the rapidity of nonlinear tracking differentiator via feed forward[J]. IEEE Transactions on Industrial Electronics, 2014, 61(7):3736-3743.[5] 李贤涛, 张葆, 孙敬辉, 等. 航空光电稳定平台扰动频率自适应的自抗扰控制[J]. 红外与激光工程, 2014, 43(5):1575-1581. LI X T, ZHANG B, SUN J H, et al. ADRC based on disturbance frequency adaptive of aerial photoelectrical stabilized platform[J]. Infrared and Laser Engineering, 2014, 43(5):1575-1581(in Chinese).[6] 黄显林, 鲍文亮, 卢鸿谦, 等. 一种具有时变观测器增益的摩擦补偿方法[J]. 电机与控制学报, 2011, 15(11):46-49. HUANG X L, BAO W L, LU H Q, et al. Friction compensation using observers with time-varying gain[J]. Electric Machines and Control, 2011, 15(11):46-49(in Chinese).[7] 王毅, 何朕, 王广雄. 一种实用的摩擦模型[J]. 电机与控制学报, 2011, 15(11):59-63. WANG Y, HE Z, WANG G X. A practical friction model[J]. Electric Machines and Control, 2011, 15(8):59-63(in Chinese).[8] KIM Y H, LEWIS F L. Reinforcement adaptive learing neuralnet-based friction compensation control for high speed and precision[J]. IEEE Transactions on Control Systems Technology, 2000, 8(1):118-126.[9] CANUDAS D W C, OLSSON H, ASTROM K J, et al. A new model for control of systems with friction[J]. IEEE Transactions on Automatic Control, 1995, 40(3):419-425.[10] 廖洪波, 范世珣, 黑墨, 等. 光电稳定平台伺服系统动力学建模与参数辨识[J]. 光学精密工程, 2015, 23(2):477-483. LIAO H B, FAN S X, HEI M, et al.. Modeling and parameter identification for electro-optical stabilized platform servo systems[J]. Optics and Precision Engineering, 2015, 23(2):477-483(in Chinese).[11] 张黎黎, 黄一, 吕俊芳. 机载光电跟瞄平台伺服系统中电流环的设计与仿真[J]. 理论与实践, 2003, 23(6):15-21. ZHANG L L, HUANG Y, LV J F. Design and simulation of current-loop for servo of airborne electro-optical pointing and tracking platform[J]. Theory and Practice, 2003, 23(6):15-21(in Chinese).[12] 左哲, 李东海, 戴亚平, 等. 陀螺稳定平台状态补偿控制[J]. 航空学报, 2008, 29(1):141-148. ZUO Z, LI D H, DAI Y P, et al. State compensating control for gyro-stabilized platform[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(1):141-148(in Chinese).[13] ARMSTRONG H B. Control of machines with friction[J]. Automatic, 1992, 28(6):1285-1287.[14] KARNOPP D. Computer simulation of slip-stick friction in mechanical dynamic systems[J]. Journal of Dynamic Systems Mesurement & Control, 1985, 107(1):100-103[15] 刘强, 尔联洁, 刘金琨. 摩擦非线性环节的特性、建模与控制补偿综述[J]. 系统工程与电子技术, 2002, 24(11):45-52. LIU Q, ER L J, LIU J K. Overview of characteristics, modeling and compensation of nonlinear friction in servo systems[J]. Systems Engineering and Electronics, 2002, 24(11):45-52(in Chinese).[16] 王英, 雄振华, 丁汉. 基于状态观测的自适应摩擦力补偿的高精度控制[J]. 自然科学进展, 2005, 15(9):1100-1105. WANG Y, XIONG Z H, DING H. Adaptive state observer based on friction compensation for high-precision control[J]. Natural Science Development, 2005, 15(9):1100-1105(in Chinese).[17] 王婉婷, 郭劲, 姜振华, 等. 光电跟踪自抗扰控制技术研究[J]. 红外与激光工程, 2017, 46(2):211-218. WANG W T, GUO J, JIANG Z H, et al. Study on photoelectric tracking system based on ADRC[J]. Infrared and Laser, 2017, 46(2):211-218(in Chinese).[18] KEMPF C J, KOBAYASHI S. Disturbance observer and feedforward design for a high-speed direct-drive positioning table[J]. IEEE Transactions on Control Systems Technology, 1999, 7(5):513-526.[19] HAN J Q. From PID to active disturbance rejection control[J]. IEEE Transaction on Industrial Electronics, 2009, 56(3):900-906.[20] 李贤涛, 张葆, 沈宏海. 基于自抗扰控制技术提高航空光电稳定平台的扰动隔离度[J]. 光学精密工程, 2014, 22(8):2223-2231. LI X T, ZHANG B, SHEN H H. Improvement of isolation degree of aerial photoelectrical stabilized platform based on ADRC[J]. Optics and Precision Engineering, 2014, 22(8):2223-2231(in Chinese).[21] 韩京清. 自抗扰控制技术-估计补偿不确定因素的控制技术[M]. 北京:国防工业出版社, 2009:243-287. HAN J Q. Active disturbances rejection control technique-the technique for estimating and compensating the uncertainties[M]. Beijing:National Defense Industry Press, 2009:243-287(in Chinese). |