[1] Zhou S. Turbomachinery aeroelasticity introduction. Beijing: National Defense Industry Press, 1989: 1-11. (in Chinese) 周盛. 叶轮机气动弹性力学引论. 北京: 国防工业出版社, 1989: 1-11.[2] Fleeter S. Aeroelasticity research for turbomachine applications. Journal of Aircraft, 1979, 16(5): 320-326.[3] Mikolajczak A A, Arnoldi R A, Snyder L E, et al. Advances in fan and compressor blade flutter analysis and predictions. Journal of Aircraft, 1975, 12(4): 325-332.[4] Lane F. System mode shapes in the flutter of compressor blade rows. Journal of the Aeronautical Sciences, 1956, 23: 54-66.[5] Carta F O. Coupled blade-disc-shroud flutter instabilities in turbojet engine rotors. Journal of Engineering for Power, 1967, 89(3): 419-426.[6] Erdos J I, Alzner E. Numerical solution of periodic transonic flow through a fan stage. NASA CR-2900, 1978.[7] Srivastava R, Bakhle M A, Keith T G, et al. Aeroelastic analysis of turbomachinery. part I-phase lagged boundary condition methods. International Journal of Numerical Methods for Head & Fluid Flow, 2004, 14(3): 366-381.[8] Srivastava R, Bakhle M A, Keith T G, et al. Aeroelastic analysis of turbomachinery. part II-stability computations. International Journal of Numerical Methods for Head & Fluid Flow, 2004, 14(3): 382-402.[9] Gnesin V, Rzadkowski R. A coupled fluid-structure analysis for 3d inviscid flutter of IV standard configuration. Journal of Sound and Vibration, 2002, 251(2): 315-327.[10] Sadeghi M, Liu F. Computation of cascade flutter by uncoupled and coupled methods. International Journal of Computational Fluid Dynamics, 2005, 19(8): 559-569.[11] Kubo A, Namba M. Analysis of interrow coupling flutter of multistage blade row. AIAA Journal 2011, 49(11): 2357-2366.[12] Zhang C A, Zhang W W, Ye Z Y, et al. An efficient method on aerodynamic damping coefficient calculation for turbomachinery. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(5): 826-833. (in Chinese) 张陈安, 张伟伟, 叶正寅, 等. 一种高效的叶轮机叶片气动阻尼计算方法. 力学学报, 2011, 43(5): 826-833.[13] Debrabandere F, Tartinville B, Hirsch C H, et al. Fluid-structure interaction using a modal approach. ASME Paper, 2011-GT-45692, 2011.[14] Sadeghi M, Liu F. Investigation of non-linear flutter by a coupled aerodynamics and structural dynamics method. AIAA-2001-573, 2001.[15] Sadeghi M, Liu F. Investigation of mistuning effects on cascade flutter using a coupled method. Journal of Propulsion and Power, 2007, 23(2): 266-272.[16] Hu Y C, Zhou X H. Numerical analysis of vibrating cascade unsteady aerodynamic and its application.Chinese Journal of Applied Mechanics, 2004, 21(3): 49-52.(in Chinese) 胡运聪, 周新海. 振动叶栅非定常气动力的数值分析及应用. 应用力学学报, 2004, 21(3): 49-52.[17] Yang Q Z, Xiao J, Zhou X H. Cascade flutter investigation base on flow-structure coupling unsteady flow.Journal of Propulsion Technology, 2005, 26(6): 526-530.(in Chinese) 杨青真, 肖军, 周新海. 基于气/固耦合非定常流动的叶栅颤振分析. 推进技术, 2005, 26(6): 526-530.[18] Jiang Y W, Zhang W W, Ye Z Y. Study of time-marching method for fluid/structure coupling solution based on CFD technique. Journal of Vibration Engineering, 2007, 20(4): 396-400. (in Chinese) 蒋跃文, 张伟伟, 叶正寅.基于CFD技术的流场/结构时域耦合求解方法研究.振动工程学报,2007,20(4):396-400.[19] Bölcs A, Fransson T H. Aeroelasticity in turbomachines—comparison of theoretical and experimental cascade results. Lausanne, Switzerland: EPFL, 1986: 131-164.[20] Su D, Zhang W W, Zhang C A, et al. An unsteady aerodynamic modeling for turbomachinery based on system identification. Acta Aeronautica et Astronautica Sinica, 2012, 33(2): 242-248.(in Chinese) 苏丹, 张伟伟, 张陈安, 等. 基于系统辨识技术的叶轮机非定常气动力建模方法.航空学报, 2012, 33(2): 242-248. |