航空学报 > 2012, Vol. 33 Issue (12): 2347-2354

惯性参数不确定的自由漂浮空间机器人自适应控制研究

张福海1,2, 付宜利1, 王树国1   

  1. 1. 哈尔滨工业大学 机器人技术与系统国家重点实验室, 黑龙江 哈尔滨 150001;
    2. 哈尔滨工业大学 材料科学与工程博士后流动站, 黑龙江 哈尔滨 150001
  • 收稿日期:2012-01-17 修回日期:2012-03-27 出版日期:2012-12-25 发布日期:2012-12-24
  • 通讯作者: 张福海 E-mail:zfhhit@hit.edu.cn
  • 作者简介:张福海 男, 博士, 讲师。主要研究方向: 空间机器人技术、 康复机器人技术。Tel: 0451-86403219 E-mail:zfhhit@hit.edu.cn
  • 基金资助:

    国家自然科学基金(60975063);中央高校基本科研业务费专项资金(HIT. NSRIF. 2013047)

Adaptive Control of Free-floating Space Robot with Inertia Parameter Uncertainties

ZHANG Fuhai1,2, FU Yili1, WANG Shuguo1   

  1. 1. State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, Harbin 150001, China;
    2. Mobile Postdoctoral Station of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
  • Received:2012-01-17 Revised:2012-03-27 Online:2012-12-25 Published:2012-12-24
  • Supported by:

    National Natural Science Foundation of China (60975063); The Fundamental Research Funds for the Central Universities(HIT. NSRIF. 2013047)

摘要:

针对自由漂浮空间机器人系统惯性参数不确定问题,提出一种笛卡儿空间内的自适应轨迹跟踪控制方法。采用扩展机械臂模型建立了自由漂浮空间机器人关节空间动力学方程,进而推导笛卡儿空间中的自由漂浮空间机器人动力学方程。在基于逆动力学法的自由漂浮空间机器人自适应控制器设计中,利用标称控制器离线固定控制参数与补偿控制器在线补偿方法,既可以保证惯量矩阵可逆,又可以使控制参数实时估计。采用Lyapunov方法的稳定性分析表明系统是稳定且渐进收敛的。最后,应用该控制方法对两杆平面自由漂浮空间机器人进行了仿真研究。仿真结果显示自由漂浮空间机器人末端执行器在笛卡儿空间具有良好的轨迹跟踪能力。

关键词: 自由漂浮空间机器人, 关节空间, 笛卡儿空间, 自适应控制, Lyapunov方法

Abstract:

In order to cope with the inertia parameter uncertainty of a free-floating space robot system, an adaptive trajectory tracking control method is proposed in Cartesian space. Dynamic equations in the joint space of the free-floating space robot system are formulated using the extended manipulator model, and then the dynamic equations in Cartesian space of the free-floating space robot system are derived. During the design of the adaptive controller for the free-floating space robot based on inverse dynamics, a nominal controller with fixed parameters offline and a compensative controller online are proposed to ensure invertibility of the inertial matrix of the dynamics model and real-time estimation of the parameters. The closed-loop system is proved to be stable and convergent by Lyapunov methods. Finally, numerical simulations of a two-link planar free-floating space robot are given using the proposed control method, which demonstrate good trajectory tracking performance of the end-effector of the free-floating space robot in Cartesian space.

Key words: free-floating space robot, joint space, Cartesian space, adaptive control systems, Lyapunov methods

中图分类号: