| [1] |
惠旭龙, 刘小川, 白春玉, 等. 民机机身框段和全机坠撞响应的对比研究[J/OL]. 航空学报,(2025-01-21)[2025-02-18]. .
|
|
XI X L, LIU X C, BAI C Y, et al. Research on the com parison of crash response between the fuselage section and full-scale civil aircraft[J/OL]. Acta Aeronautica et Astronautica Sinica, (2025-01-21)[2025-02-18]. (in Chinese).
|
| [2] |
SWATI R F, ASFANDYAR AMJAD M, TALHA M, et al. Crashworthiness study of UCAV’s main landing gear using explicit dynamics[J]. International Journal of Crashworthiness, 2022, 27(6): 1843-1859.
|
| [3] |
朱晨辰, 王彬文, 刘小川, 等. 复杂环境下起落架动力学行为研究现状与展望[J]. 航空科学技术, 2023, 34(1): 1-11.
|
|
ZHU C C, WANG B W, LIU X C, et al. Research status and prospect of landing gear dynamics in complex environment[J]. Aeronautical Science & Technology, 2023, 34(1): 1-11 (in Chinese).
|
| [4] |
HEININEN A A. Modeling and simulation of an aircraft main landing gear shock absorber[D]. Tampere: Tampere University of Technology, 2015: 34-40.
|
| [5] |
胡锐, 牟让科, 宋得军, 等. 温度对油: 气式起落架缓冲性能的影响研究[J]. 航空工程进展, 2022, 13(3): 150-156.
|
|
HU R, MU R K, SONG D J, et al. Research on the influence of temperature on the cushioning performance of oil-air landing gear[J]. Advances in Aeronautical Science and Engineering, 2022, 13(3): 150-156 (in Chinese).
|
| [6] |
方威, 朱林刚, 王友善. 环境温度对飞机起落架缓冲性能影响分析[J]. 机械设计与制造工程, 2021, 50(11): 76-80.
|
|
FANG W, ZHU L G, WANG Y S. Analysis of ambient temperature influence to landing gear shock absorber performance of aircraft[J]. Machine Design and Manufacturing Engineering, 2021, 50(11): 76-80 (in Chinese).
|
| [7] |
陈艺夫, 马宇航, 蓝庆生, 等. 基于多项式混沌法的翼型不确定性分析及梯度优化设计[J]. 航空学报, 2023, 44(8): 127446.
|
|
CHEN Y F, MA Y H, LAN Q S, et al. Uncertainty analysis and gradient optimization design of airfoil based on polynomial chaos expansion method[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(8): 127446 (in Chinese).
|
| [8] |
LUO C Q, ZHU S P, KESHTEGAR B, et al. Active Kriging-based conjugate first-order reliability method for highly efficient structural reliability analysis using resample strategy[J]. Computer Methods in Applied Mechanics and Engineering, 2024, 423: 116863.
|
| [9] |
杨倩, 郭晓峰, 李芹, 等. 基于POD和代理模型的热气防冰性能预测方法[J]. 航空学报, 2023, 44(1): 626992.
|
|
YANG Q, GUO X F, LI Q, et al. Hot air anti-icing performance estimation method based on POD and surrogate model[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(1): 626992 (in Chinese).
|
| [10] |
刘佳奇, 冯蕴雯, 路成, 等. 基于智能神经网络的航空发动机运行安全分析[J]. 航空学报, 2022, 43(9): 625375.
|
|
LIU J Q, FENG Y W, LU C, et al. Safety analysis of aero-engine operation based on intelligent neural network[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9): 625375 (in Chinese).
|
| [11] |
LIU Q, XU Y, LI Y G, et al. Fixed-interval smoothing of an aeroelastic airfoil model with cubic or free-play nonlinearity in incompressible flow[J]. Acta Mechanica Sinica, 2021, 37(7): 1168-1182.
|
| [12] |
FENG J, WANG X L, LIU Q, et al. Fusing deep learning features for parameter identification of a stochastic airfoil system[J]. Nonlinear Dynamics, 2025, 113(5): 4211-4233.
|
| [13] |
TORZONI M, TEZZELE M, MARIANI S, et al. A digital twin framework for civil engineering structures[J]. Computer Methods in Applied Mechanics and Engineering, 2024, 418: 116584.
|
| [14] |
TAO F, QI Q. Make more digital twins[J]. Nature, 2019, 573(7775): 490-491.
|
| [15] |
郭丞皓, 于劲松, 宋悦, 等. 基于数字孪生的飞机起落架健康管理技术[J]. 航空学报, 2023, 44(11): 227629.
|
|
GUO C H, YU J S, SONG Y, et al. Application of digital twin-based aircraft landing gear health management technology[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(11): 227629 (in Chinese).
|
| [16] |
朱晨辰, 王彬文, 马晓利, 等. 考虑温度效应的起落架落震缓冲性能研究[J]. 应用力学学报, 2023, 40(1): 25-33.
|
|
ZHU C C, WANG B W, MA X L, et al. Landing gear shock buffering performance considering the temperature effect[J]. Chinese Journal of Applied Mechanics, 2023, 40(1): 25-33 (in Chinese).
|
| [17] |
张峰, 杨旭锋, 刘永寿, 等. 飞机起落架缓冲器参数可靠性灵敏度分析[J]. 振动工程学报, 2015, 28(1): 67-72.
|
|
ZHANG F, YANG X F, LIU Y S, et al. Reliability parameter sensitivity analysis for aircraft landing gear shock absorber[J]. Journal of Vibration Engineering, 2015, 28(1): 67-72 (in Chinese).
|
| [18] |
SOARES C, BRAZDIL P B, KUBA P. A meta-learning method to select the kernel width in support vector regression[J]. Machine Learning, 2004, 54(3): 195-209.
|
| [19] |
DEHGHANI M, MONTAZERI Z, TROJOVSKÁ E, et al. Coati optimization algorithm: A new bio-inspired metaheuristic algorithm for solving optimization problems[J]. Knowledge-Based Systems, 2023, 259: 110011.
|
| [20] |
GUIMARÃES H, MATOS J C, HENRIQUES A A. An innovative adaptive sparse response surface method for structural reliability analysis[J]. Structural Safety, 2018, 73: 12-28.
|
| [21] |
TIZHOOSH H R. Opposition-based learning: A new scheme for machine intelligence[C]∥International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’06). Piscataway: IEEE Press, 2005: 695-701.
|
| [22] |
YAN A J, HU K C. Improved strategy and its application to the optimization of seagull optimization algorithm[J]. Information and Control, 2022, 51(6): 688-698.
|
| [23] |
TANYILDIZI E, DEMIR G. Golden sine algorithm: A novel math-inspired algorithm[J]. Advances in Electrical and Computer Engineering, 2017, 17(2): 71-78.
|
| [24] |
WU Y T. Computational methods for efficient structural reliability and reliability sensitivity analysis[J]. AIAA Journal, 1994, 32(8): 1717-1723.
|
| [25] |
WU Y T, MOHANTY S. Variable screening and ranking using sampling-based sensitivity measures[J]. Reliability Engineering & System Safety, 2006, 91(6): 634-647.
|
| [26] |
XUE J K, SHEN B. Dung beetle optimizer: A new meta-heuristic algorithm for global optimization[J]. The Journal of Supercomputing, 2023, 79(7): 7305-7336.
|
| [27] |
MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61.
|
| [28] |
MIRJALILI S, LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51-67.
|