彭勃1,2, 白吉康2,3, 陈伟文3, 郑向涛3(
), 雷建军1, 卢孝强3
收稿日期:2025-09-08
修回日期:2025-09-24
接受日期:2025-10-22
出版日期:2025-11-14
发布日期:2025-11-13
通讯作者:
郑向涛
E-mail:xiangtaoz@gmail.com
基金资助:
Bo PENG1,2, Jikang BAI2,3, Weiwen CHEN3, Xiangtao ZHENG3(
), Jianjun LEI1, Xiaoqiang LU3
Received:2025-09-08
Revised:2025-09-24
Accepted:2025-10-22
Online:2025-11-14
Published:2025-11-13
Contact:
Xiangtao ZHENG
E-mail:xiangtaoz@gmail.com
Supported by:摘要:
随着人工智能技术的发展,无人机(UAV)可通过搭载不同光电载荷对感兴趣目标进行自动识别定位,用于灾害环境下的人员搜救(SaR)任务。无人机搜救任务需要在复杂危险的搜救环境中快速找到失联人员,面临着探测手段单一、成像过程易干扰、背景错综复杂、无人机平台资源受限等挑战。近年来,将无人机系统与深度学习算法相结合已成为研究热点,为了展现无人机搜救的研究进展,对无人机搜救方法进行了综述。首先,针对无人机搜救任务的特点对无人机搜救面临的难点进行了分析;然后,对近年来各类基于深度学习的无人机搜救方法进行了梳理;此外,根据不同的数据类型,整理了与无人机搜救任务相关的目标检测数据集;最后,总结了目前研究存在的问题及未来的发展方向。
中图分类号:
彭勃, 白吉康, 陈伟文, 郑向涛, 雷建军, 卢孝强. 基于深度学习的无人机搜救方法研究进展[J]. 航空学报, 2025, 46(23): 632761.
Bo PENG, Jikang BAI, Weiwen CHEN, Xiangtao ZHENG, Jianjun LEI, Xiaoqiang LU. Research progress for UAV search and rescue methods based on deep learning[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(23): 632761.
表2
不同的成像环境干扰类型及应对方法
| 干扰类型 | 问题表现 | 解决方法 | 方法特点 |
|---|---|---|---|
| 低光照干扰 | 成像环境亮度低,使可见光图像噪声大、细节模糊且目标纹理不明显,目标与背景的区分度不高 | 联合低光照图像增强与目标检测的方法; 跨模态信息融合; 配置辅助设备 | 多任务网络模型复杂度高;“先增强,再检测”的框架实时性不佳;检测效果受增强效果的影响 融合红外模态可以适应极端黑暗环境;计算复杂度高,对算力要求高;需要配准可见光和红外数据 通过深度相机等,可以在极端黑暗环境看清目标 |
| 雨雾干扰 | 雨雾中微粒会吸收和散射可见光和红外信号的能量,破坏目标与背景温度差异,影响红外成像质量 | 基于深度线索的自适应特征调制方法; 联合去雾与目标检测的多任务网络; 雷达探测; | 利用深度信息,引入物理先验,模型泛化性强;检测精度依赖深度图质量 去雾任务与检测任务更新方向不同,多任务网络训练难度高;检测精度受去雾的效果影响 雷达探测可穿透雨雾,但设备要求高 |
| 运动模糊干扰 | 目标相对运动导致边缘模糊、纹理被破环 | 联合去模糊与目标检测的多任务网络 | 多任务网络训练复杂,且需要考虑模型优化以减少参数量,提升实时性 |
表3
可用于无人机搜救的检测数据集
| 数据类型 | 数据集 | 发布年份 | 下载地址 |
|---|---|---|---|
| 可见光 | HERIDAL | 2019 | https:∥universe.roboflow.com/licenta-ynwvo/heridal-lrbkc |
| TinyPerson | 2020 | https:∥github.com/ucas-vg/TinyBenchmark | |
| SARD | 2021 | https:∥universe.roboflow.com/datasets-pdabr/sard-8xjhy | |
| AFO | 2021 | https:∥datasetninja.com/afo | |
| Manipal-UAV | 2023 | https:∥github.com/Akshathakrbhat/Manipal-UAV-Person-Dataset | |
| Archangel | 2023 | https:∥a2i2-archangel.vision | |
| C2A | 2024 | https:∥github.com/Ragib-Amin-Nihal/C2A | |
| 红外 | BIRDSAI | 2020 | https:∥lila.science/datasets/conservationdrones |
| UAV thermal image | 2020 | https:∥zenodo.org/records/4327118 | |
| HIT-UAV | 2023 | https:∥www.kaggle.com/datasets/pandrii000/hituav-a-highaltitude-infrared-thermal-dataset | |
| POP | 2025 | https:∥osf.io/kmcva/ | |
| 雷达 | UWB radar dataset | 2024 | https:∥zenodo.org/records/10731867 |
| 多光谱 | SeaDronesSee | 2022 | https:∥seadronessee.cs.uni-tuebingen.de./ |
| NII-CU | 2022 | https:∥www.nii-cu-multispectral.org/ | |
| WiSARD | 2022 | https:∥sites.google.com/uw.edu/wisard/ | |
| RGBTDronePerson | 2023 | https:∥nnnnerd.github.io/RGBTDronePerson/ | |
| VTSaR | 2025 | https:∥github.com/zxq309/VTSaR |
表4
不同数据集的数据规模、采集场景及标注
| 数据类型 | 数据集 | 数据规模 | 采集场景 | 标注 |
|---|---|---|---|---|
| 可见光 | HERIDAL | 500张标注的全尺寸航拍图像 | 山地、荒野、森林等 | 人物位置边界框 |
| TinyPerson | 1 610张标注图像 | 海洋、海滩等 | 目标类别标注及边界框 | |
| SARD | 1 981张标注图像 | 岩石区、森林等 | 人物位置边界框 | |
| AFO | 3 647张标注图像 | 海洋 | 目标类别标注及边界框 | |
| Manipal-UAV | 13 462张标注图像 | 学校、道路及建筑等 | 人物位置边界框 | |
| Archangel | 4 643 900张标注图像 | 草地、沙漠等 | 目标类别标注、边界框、人物姿态标注及无人机与目标相对位置的元数据 | |
| C2A | 10 215张标注图像 | 火灾、洪水、废墟及交通事故等 | 人物位置边界框、人物姿态及灾难场景 | |
| 红外 | BIRDSAI | 172段标注红外视频 | 草地、水域及森林等 | 目标类别标注及边界框 |
| UAV thermal image | 6 447张标注的红外图像 | 海滩、树木及建筑等 | 人物位置边界框、人物 | |
| HIT-UAV | 2 898张标注的红外图像 | 学校、道路及操场等 | 目标类别标注、边界框及无人机飞行高度、拍摄视角、时间及天气 | |
| POP | 8 768张标注的红外图像 | 树林、草地及山区等 | 人物位置边界框 | |
| 雷达 | UWB radar | 270个完整采集会话 | 不同风力的野外场景 | 人体是否存在 |
| 多光谱 | SeaDronesSee | 超54 000张标注图像,包括432张多光谱图像 | 海洋 | 目标类别标注、边界框及无人机状态的元数据 |
| NII-CU | 5 880对标注RGB和红外图像 | 棒球场、森林等 | 人物位置边界框 | |
| WiSARD | 55 942张标注图像,包括15 453对标注RGB和红外图像 | 森林、岩石区、海岸、山地及雪地等 | 人物位置边界框及包含时间、相机视角等的元数据 | |
| RGBTDrone-Person | 6 125对标注RGB和红外图像 | 森林、建筑及田野等 | 目标类别标注及边界框 | |
| VTSaR | 32 400张标注图像,包括9 602对标注RGB和红外图像 | 街区、海岸线、海洋、工业区及荒野等 | 人物位置边界框 |
| [1] | 江波, 屈若锟, 李彦冬, 等. 基于深度学习的无人机航拍目标检测研究综述[J]. 航空学报, 2021, 42(4): 524519. |
| JIANG B, QU R K, LI Y D, et al. Object detection in UAV imagery based on deep learning: Review[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 524519 (in Chinese). | |
| [2] | TONG X Z, GUO X J, SUN X Y, et al. CMDistill: Cross-modal distillation framework for UAV image object detection[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 18: 1395-1409. |
| [3] | SURMANN H, KAISER T, LEINWEBER A, et al. Small commercial UAVs for indoor search and rescue missions[C]∥2021 7th International Conference on Automation, Robotics and Applications (ICARA). Piscataway: IEEE Press, 2021: 106-113. |
| [4] | NIEDZIELSKI T, JURECKA M, MIZIŃSKI B, et al. First successful rescue of a lost person using the human detection system: A case study from beskid niski (SE Poland)[J]. Remote Sensing, 2021, 13(23): 4903. |
| [5] | MARTINEZ-ALPISTE I, GOLCARENARENJI G, WANG Q, et al. Search and rescue operation using UAVs: A case study[J]. Expert Systems with Applications, 2021, 178: 114937. |
| [6] | PETRLIK M, PETRACEK P, KRATKY V, et al. UAVs beneath the surface: Cooperative autonomy for subterranean search and rescue in DARPA SubT[DB/OL]. Arxiv Preprint: 2206. 08185, 2022. |
| [7] | XU J. Application of multispectral and thermal imaging technologies in drone search and rescue missions[J]. Traitement du Signal, 2024, 41(5): 2317. |
| [8] | LIU C, SZIRÁNYI T. Road condition detection and emergency rescue recognition using on-board UAV in the wildness[J]. Remote Sensing, 2022, 14(17): 4355. |
| [9] | MUKHERJEE S, COUDERT O, BEARD C. UNIMODAL: UAV-aided infrared imaging based object detection and localization for search and disaster recovery[C]∥2022 IEEE International Symposium on Technologies for Homeland Security (HST). Piscataway: IEEE Press, 2022: 1-6. |
| [10] | PAPYAN N, KULHANDJIAN M, KULHANDJIAN H, et al. AI-based drone assisted human rescue in disaster environments: Challenges and opportunities[J]. Pattern Recognition and Image Analysis, 2024, 34(1): 169-186. |
| [11] | CAO Y S, QI F G, JING Y, et al. Mission chain driven unmanned aerial vehicle swarms cooperation for the search and rescue of outdoor injured human targets[J]. Drones, 2022, 6(6): 138. |
| [12] | MANZONI M, MORO S, LINSALATA F, et al. Evaluation of UAV-based ISAC SAR imaging: Methods and performances[C]∥2024 IEEE Radar Conference (RadarConf24). Piscataway: IEEE Press, 2024: 1-6. |
| [13] | CHAVES C S, GESCHKE R H, SHARGORODSKYY M, et al. Polarimetric UAV-deployed FMCW radar for buried people detection in rescue scenarios[C]∥2021 18th European Radar Conference (EuRAD). Piscataway: IEEE Press, 2022: 5-8. |
| [14] | ABDELLATIF A A, ELMANCY A, MOHAMED A, et al. PDSR: Efficient UAV deployment for swift and accurate post-disaster search and rescue[J]. IEEE Internet of Things Magazine, 2025, 8(3): 149-156. |
| [15] | XI Y, JIA W J, MIAO Q G, et al. Detection-driven exposure-correction network for nighttime drone-view object detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5605014. |
| [16] | HE L J, ZHENG H Y, ZHAI X P. REUT: A retinex-inspired low-light image enhancer for UAV tracking at night[C]∥2022 IEEE Smartworld, Ubiquitous Intelligence & Computing, Scalable Computing & Communications, Digital Twin, Privacy Computing, Metaverse, Autonomous & Trusted Vehicles. Piscataway: IEEE Press, 2022: 1051-1057. |
| [17] | FANG Q Y, HAN D P, WANG Z K. Cross-modality fusion transformer for multispectral object detection[DB/OL]. ArXiv Preprint: 2111.00273, 2021. |
| [18] | YUAN M X, WEI X X. C²Former: Calibrated and complementary transformer for RGB-infrared object detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5403712. |
| [19] | BOITEAU S, VANEGAS F, GONZALEZ F. Framework for autonomous UAV navigation and target detection in global-navigation-satellite-system-denied and visually degraded environments[J]. Remote Sensing, 2024, 16(3): 471. |
| [20] | LINDQVIST B, KANELLAKIS C, MANSOURI S S, et al. COMPRA: A COMPact reactive autonomy framework for subterranean MAV based search-and-rescue operations[J]. Journal of Intelligent & Robotic Systems, 2022, 105(3): 49. |
| [21] | FANG W X, ZHANG G Q, ZHENG Y H, et al. Multi-task learning for UAV aerial object detection in foggy weather condition[J]. Remote Sensing, 2023, 15(18): 4617. |
| [22] | WU W, CHANG H, CHEN Z W, et al. Plug-and-play robust aerial object detection under hazy conditions[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 983-998. |
| [23] | FENG C, CHEN Z, LI X, et al. HazyDet: Open-source benchmark for drone-view object detection with depth-cues in hazy scenes[DB/OL]. ArXiv Preprint: 2409. 19833, 2024. |
| [24] | LU H Y, YANG Y H, TAO R T, et al. Coverage path planning for SAR-UAV in search area coverage tasks based on deep reinforcement learning[C]∥2022 IEEE International Conference on Unmanned Systems (ICUS). Piscataway: IEEE Press, 2022: 248-253. |
| [25] | LI Q P, ZHANG Y X, FANG L Y, et al. DREB-net: Dual-stream restoration embedding blur-feature fusion network for high-mobility UAV object detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2025, 63: 5621218. |
| [26] | ZHU B Y, LV Q B, TAN Z. Adaptive multi-scale fusion blind deblurred generative adversarial network method for sharpening image data[J]. Drones, 2023, 7(2): 96. |
| [27] | JOBAER S, TANG X S, ZHANG Y H, et al. A novel knowledge distillation framework for enhancing small object detection in blurry environments with unmanned aerial vehicle-assisted images[J]. Complex & Intelligent Systems, 2024, 11(1): 63. |
| [28] | 周建亭, 宣士斌, 王婷. 融合遮挡信息的改进DDETR无人机目标检测算法[J]. 计算机工程与应用, 2024, 60(1): 236-244. |
| ZHOU J T, XUAN S B, WANG T. Improved DDETR UAV target detection algorithm incorporating occlusion information[J]. Computer Engineering and Applications, 2024, 60(1): 236-244 (in Chinese). | |
| [29] | MARQUES T, CARREIRA S, MIRAGAIA R, et al. Applying deep learning to real-time UAV-based forest monitoring: Leveraging multi-sensor imagery for improved results[J]. Expert Systems with Applications, 2024, 245: 123107. |
| [30] | RAMÍREZ-AYALA O, GONZÁLEZ-HERNÁNDEZ I, SALAZAR S, et al. Real-time person detection in wooded areas using thermal images from an aerial perspective[J]. Sensors, 2023, 23(22): 9216. |
| [31] | NATHAN R J, KURMI I, BIMBER O. Drone swarm strategy for the detection and tracking of occluded targets in complex environments[J]. Communications Engineering, 2023, 2: 55. |
| [32] | ZHANG J, HUANG H L. Occlusion-aware UAV path planning for reconnaissance and surveillance[J]. Drones, 2021, 5(3): 98. |
| [33] | 孔垂乐, 孟昱煜, 火久元, 等. 改进YOLOv11的无人机海上小目标检测算法[J/OL]. 计算机工程与应用, (2025-07-08)[2025-08-23]. . |
| KONG C L, MENG Y Y, HUO J Y, et al. Improved UAV maritime small target detection algorithm for YOLOv11[J/OL]. Computer Engineering and Application, (2025-07-08)[2025-08-23]. (in Chinese). | |
| [34] | XU J H, FAN X T, JIAN H D, et al. YoloOW: A spatial scale adaptive real-time object detection neural network for open water search and rescue from UAV aerial imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5623115. |
| [35] | ZHANG Y J, YIN Y, SHAO Z Y. An enhanced target detection algorithm for maritime search and rescue based on aerial images[J]. Remote Sensing, 2023, 15(19): 4818. |
| [36] | WANG S L, ZHAO Y, ZHOU C, et al. Vision-guided maritime UAV rescue system with optimized GPS path planning and dual-target tracking[J]. Drones, 2025, 9(7): 502. |
| [37] | BOULARES M, FEHRI A, JEMNI M. UAV path planning algorithm based on Deep Q-Learning to search for a floating lost target in the ocean[J]. Robotics and Autonomous Systems, 2024, 179: 104730. |
| [38] | LI X X, DIAO W H, MAO Y Q, et al. OGMN: Occlusion-guided multi-task network for object detection in UAV images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 199: 242-257. |
| [39] | 于傲泽, 魏维伟, 王平, 等. 基于分块复合注意力的无人机小目标检测算法[J]. 航空学报, 2024, 45(14): 629148. |
| YU A Z, WEI W W, WANG P, et al. Small target detection algorithm for UAV based on patch-wise co-attention[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(14): 629148 (in Chinese). | |
| [40] | ZHANG N, NEX F, VOSSELMAN G, et al. Training a disaster victim detection network for UAV search and rescue using harmonious composite images[J]. Remote Sensing, 2022, 14(13): 2977. |
| [41] | 陈锦涛, 李鸿一, 任鸿儒, 等. 基于RRT森林算法的高层消防多无人机室内协同路径规划[J]. 自动化学报, 2023, 49(12): 2615-2626. |
| CHEN J T, LI H Y, REN H R, et al. Cooperative indoor path planning of multi-UAVs for high-rise fire fighting based on RRT-forest algorithm[J]. Acta Automatica Sinica, 2023, 49(12): 2615-2626 (in Chinese). | |
| [42] | XI M, DAI H A, HE J Y, et al. A lightweight reinforcement-learning-based real-time path-planning method for unmanned aerial vehicles[J]. IEEE Internet of Things Journal, 2024, 11(12): 21061-21071. |
| [43] | DOMOZI Z, STOJCSICS D, BENHAMIDA A, et al. Real time object detection for aerial search and rescue missions for missing persons[C]∥2020 IEEE 15th International Conference of System of Systems Engineering (SoSE). Piscataway: IEEE Press, 2020: 519-524. |
| [44] | WANG R P, LIN C, LI Y J. RPLFDet: A lightweight small object detection network for UAV aerial images with rational preservation of low-level features[J]. IEEE Transactions on Instrumentation and Measurement, 2025, 74: 5013514. |
| [45] | BETTI A, TUCCI M. YOLO-S: A lightweight and accurate YOLO-like network for small target selection in aerial imagery[J]. Sensors, 2023, 23(4): 1865. |
| [46] | XU L J, YANG Q H, QIN M, et al. Collaborative human recognition with lightweight models in drone-based search and rescue operations[J]. IEEE Transactions on Vehicular Technology, 2024, 73(2): 1765-1776. |
| [47] | ZHANG X Q, FENG Y, ZHANG S, et al. Robust aerial person detection with lightweight distillation network for edge deployment[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5630616. |
| [48] | KUMAR G, ANWAR A, DIKSHIT A, et al. Obstacle avoidance for a swarm of unmanned aerial vehicles operating on particle swarm optimization: A swarm intelligence approach for search and rescue missions[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2022, 44(2): 56. |
| [49] | HORYNA J, BACA T, WALTER V, et al. Decentralized swarms of unmanned aerial vehicles for search and rescue operations without explicit communication[J]. Autonomous Robots, 2023, 47(1): 77-93. |
| [50] | 王浩宇, 张泽旭, 闻单, 等. 基于时序耦合分析的无人机集群任务分配方法[J/OL]. 航空学报, (2025-05-28)[2025-08-22]. . |
| WANG H Y, ZHANG Z X, WEN S, et al. Task allocation algorithm for UAV swarm based on temporal coupling analysis[J/OL]. Acta Aeronautica et Astronautica Sinica, (2025-05-28)[2025-08-22]. (in Chinese). | |
| [51] | KHALIL H, RAHMAN S U, ULLAH I, et al. A UAV-swarm-communication model using a machine-learning approach for search-and-rescue applications[J]. Drones, 2022, 6(12): 372. |
| [52] | 方城亮, 杨飞生, 潘泉. 基于MASAC强化学习算法的多无人机协同路径规划[J]. 中国科学: 信息科学, 2024, 54(8): 1871-1883. |
| FANG C L, YANG F S, PAN Q. Multi-UAV collaborative path planning based on multi-agent soft actor critic[J]. Scientia Sinica (Informationis), 2024, 54(8): 1871-1883 (in Chinese). | |
| [53] | BOŽIĆ-ŠTULIĆ D, MARUŠIĆ Ž, GOTOVAC S. Deep learning approach in aerial imagery for supporting land search and rescue missions[J]. International Journal of Computer Vision, 2019, 127(9): 1256-1278. |
| [54] | YU X H, GONG Y Q, JIANG N, et al. Scale match for tiny person detection[C]∥2020 IEEE Winter Conference on Applications of Computer Vision (WACV). Piscataway: IEEE Press, 2020: 1246-1254. |
| [55] | SAMBOLEK S, IVASIC-KOS M. Automatic person detection in search and rescue operations using deep CNN detectors[J]. IEEE Access, 2021, 9: 37905-37922. |
| [56] | GA̧SIENICA-JÓZKOWY J, KNAPIK M, CYGANEK B. An ensemble deep learning method with optimized weights for drone-based water rescue and surveillance[J]. Integrated Computer-Aided Engineering, 2021, 28(3): 221-235. |
| [57] | AKSHATHA K R, KARUNAKAR A K, SATISH SHENOY B, et al. Manipal-UAV person detection dataset: A step towards benchmarking dataset and algorithms for small object detection[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 195: 77-89. |
| [58] | SHEN Y T, LEE Y, KWON H, et al. Archangel: A hybrid UAV-based human detection benchmark with position and pose metadata[J]. IEEE Access, 2023, 11: 80958-80972. |
| [59] | NIHAL R A, YEN B, ITOYAMA K, et al. UAV-enhanced combination to application: Comprehensive analysis and benchmarking of a human detection dataset for disaster scenarios[M]∥Pattern Recognition. Cham: Springer Nature Switzerland, 2024: 145-162. |
| [60] | BONDI E, JAIN R, AGGRAWAL P, et al. BIRDSAI: A dataset for detection and tracking in aerial thermal infrared videos[C]∥2020 IEEE Winter Conference on Applications of Computer Vision (WACV). Piscataway: IEEE Press, 2020: 1747-1756. |
| [61] | DONG J, OTA K, DONG M X. UAV-based real-time survivor detection system in post-disaster search and rescue operations[J]. IEEE Journal on Miniaturization for Air and Space Systems, 2021, 2(4): 209-219. |
| [62] | SUO J S, WANG T Y, ZHANG X Z, et al. HIT-UAV: A high-altitude infrared thermal dataset for Unmanned Aerial Vehicle-based object detection[J]. Scientific Data, 2023, 10(1): 227. |
| [63] | SONG Z Y, YAN Y L, CAO Y X, et al. An infrared dataset for partially occluded person detection in complex environment for search and rescue[J]. Scientific Data, 2025, 12(1): 300. |
| [64] | PALIODIMOS E N, PAPADOPOULOS F G, UZUNIDIS D, et al. A UWB radar and machine learning-based tool for detecting victims through foliage in search and rescue operations[C]∥2024 13th International Conference on Modern Circuits and Systems Technologies (MOCAST). Piscataway: IEEE Press, 2024: 1-5. |
| [65] | VARGA L A, KIEFER B, MESSMER M, et al. SeaDronesSee: A maritime benchmark for detecting humans in open water[C]∥2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). Piscataway: IEEE Press, 2022: 3686-3696. |
| [66] | SPETH S, GONÇALVES A, RIGAULT B, et al. Deep learning with RGB and thermal images onboard a drone for monitoring operations[J]. Journal of Field Robotics, 2022, 39(6): 840-868. |
| [67] | BROYLES D, HAYNER C R, LEUNG K. WiSARD: A labeled visual and thermal image dataset for wilderness search and rescue[C]∥2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE Press, 2022: 9467-9474. |
| [68] | ZHANG Y, XU C, YANG W, et al. Drone-based RGBT tiny person detection[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 204: 61-76. |
| [69] | ZHANG X Q, FENG Y, WANG N, et al. Aerial person detection for search and rescue: Survey and benchmarks[J]. Journal of Remote Sensing, 2025, 5: 474. |
| [1] | 徐建宇, 周莉, 王占学, 是介, 史毫. 基于快速逐线计算模型的高超声速羽流红外辐射计算方法[J]. 航空学报, 2025, 46(8): 630778-630778. |
| [2] | 孟令捷, 李红光, 李新军. 基于地貌类别信息指导的SAR图像仿真方法[J]. 航空学报, 2025, 46(7): 331003-331003. |
| [3] | 赵志浩, 杨照华, 吴云, 余远金. 弱光环境下基于深度学习的单光子计数成像去噪方法[J]. 航空学报, 2025, 46(3): 630531-630531. |
| [4] | 吴一全, 童康. 基于深度学习的无人机航拍图像小目标检测研究进展[J]. 航空学报, 2025, 46(3): 30848-030848. |
| [5] | 黄维, 潘家皓, 何楚. 小波时频局部化无人机目标检测模型压缩研究[J]. 航空学报, 2025, 46(23): 631952-631952. |
| [6] | 范天麒, 邹征夏, 史振威. 基于强化学习数据合成的典型遥感目标检测[J]. 航空学报, 2025, 46(23): 631955-631955. |
| [7] | 刘奎, 孙浩, 伍瀚, 计科峰, 匡纲要. 动态亮度重建的无人机可见光-红外融合目标检测[J]. 航空学报, 2025, 46(23): 631968-631968. |
| [8] | 钟帅, 王丽萍. MCS-RETR:改进RT-DETR的无人机航拍图像目标检测方法[J]. 航空学报, 2025, 46(22): 331987-331987. |
| [9] | 郑忆, 程向红, 唐兴邦, 曹毅. 基于改进ReDet的航拍绝缘子及其缺陷定向检测算法[J]. 航空学报, 2025, 46(18): 331825-331825. |
| [10] | 姜筱巍, 吴一全. 无人机航拍图像拼接方法研究进展[J]. 航空学报, 2025, 46(17): 331799-331799. |
| [11] | 杨永刚, 姜文韬, 高志云. 低空无人机实时目标检测算法[J]. 航空学报, 2025, 46(16): 331619-331619. |
| [12] | 陈霖, 顾曦文, 陈知颖, 张倬, 孙晓亮. 适应着舰引导大距离跨度的高精度单目视觉位姿测量[J]. 航空学报, 2025, 46(15): 331568-331568. |
| [13] | 孙彬, 游航, 李文博, 刘祥瑞, 马佳义. 双光载荷图像融合及其在低空遥感中的应用[J]. 航空学报, 2025, 46(11): 531343-531343. |
| [14] | 孟凡腾, 秦勇, 崔京, 吴云鹏, 张紫城, 魏少伟. 铁路外部环境无人机图像未知风险检测方法[J]. 航空学报, 2025, 46(11): 531262-531262. |
| [15] | 陈树生, 贾苜梁, 林家豪, 金世轶, 高正红, 王岳青, 马志强, 李铮, 段辰龙, 李佳伟. 生成式模型赋能飞行器技术应用研究进展与展望[J]. 航空学报, 2025, 46(10): 631194-631194. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学

