| [1] |
中国民用航空局. 中国民用航空规章-第25部-运输类飞机适航标准: CCAR-25-R4 [S]. 北京: 中国民用航空局政策法规司, 2016.
|
|
China Civil Aviation Administration. China civil aviation regulations-Part 25-Airworthiness standards for transport aircraft: CCAR-25-R4 [S]. Beijing: Policy and Regulation Department, China Civil Aviation Administration, 2016 (in Chinese).
|
| [2] |
王彬文, 王育鹏. 飞机强度试验[M]. 北京: 航空工业出版社, 2021.
|
|
WANG B W, WANG Y P. Aircraft strength tests[M]. Beijing: Aviation Industry Press, 2021 (in Chinese).
|
| [3] |
孙侠生, 苏少普, 孙汉斌, 等. 国外航空疲劳研究现状及展望 [J]. 航空学报, 2021, 42(5): 524791.
|
|
SUN X S, SU S P, SUN H B, et al. Current status and prospect of overseas research on aeronautical fatigue[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(5): 524791 (in Chinese).
|
| [4] |
王彬文, 陈先民, 苏运来, 等. 中国航空工业疲劳与结构完整性研究进展与展望 [J]. 航空学报, 2021, 42(5): 524651.
|
|
WANG B W, CHEN X M, SU Y L, et al. Research progress and prospect of fatigue and structural integrity for aeronautical industry in China[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(5): 524651 (in Chinese).
|
| [5] |
ARDIANTO Y, BÖSCH P, NIELSEN T. Test program for the A380 major fatigue test[C]∥Symposium of the International Committee on Aeronautical Fatigue. 2005: 8-10.
|
| [6] |
田文朋, 宋鹏飞, 夏峰, 等. 民机疲劳试验载荷谱简化研究与验证[J]. 机床与液压, 2022, 50(7): 78-81.
|
|
TIAN W P, SONG P F, XIA F, et al. Research and verification on load spectrum simplification of civil aircraft fatigue test[J]. Machine Tool & Hydraulics, 2022, 50(7): 78-81 (in Chinese).
|
| [7] |
HEALEY R, WANG J, CHIU W K, et al. A review on aircraft spectra simplification techniques for composite structures [J]. Composites Part C: Open Access, 2021, 5: 100131.
|
| [8] |
JOO Y S, LEE W J, SEO B H, et al. Introduction of developing fatigue load spectrum for full-scale fatigue test of composite aircraft[J]. International Journal of Aeronautical and Space Sciences, 2020, 21: 681-692.
|
| [9] |
ALI D, SHAHZAD A, KHAN T A. Development of fatigue loading spectra from flight test data[J]. Procedia Structural Integrity, 2016, 2: 3296-3304.
|
| [10] |
张立新. 全机疲劳试验几个问题的探讨[J]. 航空工程进展, 2024, 15(4): 10-15, 26.
|
|
ZHANG L X. Discussions on some problems of full-scale aircraft fatigue test[J]. Advances in Aeronautical Science and Engineering, 2024, 15(4): 10-15, 26 (in Chinese).
|
| [11] |
刘春艳, 唐吉运, 强宝平, 等. 全机结构疲劳试验载荷优化技术模拟研究 [J]. 科学技术与工程, 2019, 19(7): 284-288.
|
|
LIU C Y, TANG J Y, QIANG B P, et al. Simulation study on full-scale aircraft structure fatigue test load optimization technology[J]. Science Technology and Engineering, 2019, 19(7): 284-288 (in Chinese).
|
| [12] |
贺谦. 飞机结构疲劳试验载荷处理系统架构设计[J]. 电子技术与软件工程, 2020(6): 70-72.
|
|
HE Q. Architecture design of load processing system for aircraft structural fatigue test [J]. Electronic Technology & Software Engineering, 2020(6): 70-72 (in Chinese).
|
| [13] |
孟繁沛, 王建邦, 李令芳, 等. 飞机结构疲劳试验载荷的优化设计[J]. 航空学报, 2001, 22(6): 553-555.
|
|
MENG F P, WANG J B, LI L F, et al. Optimum design of fatigue testing loads for airplane structures[J]. Acta Aeronautica et Astronautica Sinica, 2001, 22(6): 553-555 (in Chinese).
|
| [14] |
牧彬. 基于特征根的结构强度试验控制系统参数优化 [J]. 工程与试验, 2020, 60(1): 4-5, 42.
|
|
MU B. Parameter optimization of structural strength test control system based on characteristic root[J]. Engineering & Test, 2020, 60(1): 4-5, 42 (in Chinese).
|
| [15] |
GOWTHAM G, JAGAN RAJ R. Mathematical modelling and PID control system implementation for quadcopter frame Tarot FY650[J]. Aircraft Engineering Aerospace Technology: An International Journal, 2024, 96(2):273-284.
|
| [16] |
赵洪伟, 冯建民, 韩涛, 等. 多通道结构疲劳试验系统闭环交叉补偿控制[J]. 控制工程, 2021, 28(2): 395-400.
|
|
ZHAO H W, FENG J M, HAN T, et al. Closed-loop cross-compensation control for multi-channel structural fatigue testing system[J]. Control Engineering of China, 2021, 28(2): 395-400 (in Chinese).
|
| [17] |
王刚, 宋鹏飞, 张柁. 多系统复杂机构试验同步控制技术研究 [J]. 今日制造与升级, 2024(3): 169-171.
|
|
WANG G, SONG P F, ZHANG T. Research on synchronization control technology of multi-system complex mechanism test[J]. Manufacturing and Upgrading Today, 2024(3): 169-171 (in Chinese).
|
| [18] |
刘振宇, 米征. 机翼疲劳试验控制精度提升方法研究 [J]. 计算机测量与控制, 2020, 28(6): 252-256, 275.
|
|
LIU Z Y, MI Z. Research on Method of Improving control accuracy of wing fatigue test[J]. Computer Measurement & Control, 2020, 28(6): 252-256, 275 (in Chinese).
|
| [19] |
刘振宇. 基于加载频率的飞机结构疲劳试验谱优化研究 [J]. 今日制造与升级, 2021(9): 46-48, 51.
|
|
LIU Z Y. Optimization of fatigue test spectra of aircraft structures based on loading frequency[J]. Manufacturing & Upgrading Today, 2021(9): 46-48, 51 (in Chinese).
|
| [20] |
吝继锋, 陈戈, 冯建民. 大变形结构地面强度试验应急卸载控制技术研究 [J]. 工程与试验, 2020, 60(4): 37-40.
|
|
LIN J F, CHEN G, FENG J M. Research on control technology for emergency unload in ground strength test of large deformation structure[J]. Engineering & Test, 2020, 60(4): 37-40 (in Chinese).
|
| [21] |
GAO X S, YOU S, SCHULTZ A, et al. Development of high performance multi-axial hybrid simulation system for full-scale testing[C]∥ 12th Canadian Conference on Earthquake Engineering. 2019:1-8.
|
| [22] |
YANG M S, JEONG J G, SEOL C W, et al. Technical papers: Floating set-up method for full scale airframe durability test[J]. Journal of the Korean Society for Aeronautical & Space Sciences, 2004, 32(2): 88-94.
|
| [23] |
SCHORR F, TUSCH O, WU D, et al. Fatigue testing of new generation wide body aircraft at benchmark level [C]∥35th ICAF Conference and 29th ICAF Symposium: ICAF 2017. 2017.
|
| [24] |
ZHENG J J, WANG B W, ZHU L G, et al. Research on attitude control and constraint system design of full-scale aircraft static test based on barycenter[C]∥32nd Congress of the International Council of the Aeronautical Sciences. 2021.
|
| [25] |
裴连杰, 郭俊毫, 郑建军. 新型战斗机全机疲劳试验飞机支持系统设计 [J]. 今日制造与升级, 2020(8): 66-68.
|
|
PEI L J, GUO J H, ZHENG J J. Design of aircraft support system for full-scale fatigue test of new fighter jet[J]. Manufacturing & Upgrading Today, 2020(8): 66-68 (in Chinese).
|
| [26] |
王鑫涛, 杜星. 飞机结构强度试验应急载荷限定系统 [J]. 航空学报, 2020, 41(2): 223332.
|
|
WANG X T, DU X. Emergency load limited system for aircraft structural strength test[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(2): 223332 (in Chinese).
|
| [27] |
ZHENG J J, JIN F, WANG B, et al. Research on automatic attitude control technology of six-degree-of-freedom displacement compensation for full-scale aircraft static test [J]. Experimental Techniques, 2025: 1-18 (in press).
|
| [28] |
崔明, 冯建民, 米征, 等. 大型无人机主结构耐久性试验加载技术 [J]. 航空学报, 2022, 43(6): 525887.
|
|
CUI M, FENG J M, MI Z, et al. Loading technology for main structure of large UAV durability test[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 525887 (in Chinese).
|
| [29] |
郭琼, 刘玮, 裴连杰, 等. 全尺寸复合材料机身筒段静力/疲劳试验技术 [J]. 航空学报, 2022, 43(6): 525816.
|
|
GUO Q, LIU W, PEI L J, et al. Static and fatigue test technology for full-scale composite fuselage barrels[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 525816 (in Chinese).
|
| [30] |
裴连杰, 王育鹏, 张建锋, 等. 战斗机全机疲劳试验技术发展概述 [J]. 航空工程进展, 2023, 14(2): 136-144.
|
|
PEI L J, WANG Y P, ZHANG J F, et al. Overview of the development of full-scale fatigue test technology for fighter[J]. Advances in Aeronautical Science and Engineering, 2023, 14(2): 136-144 (in Chinese).
|
| [31] |
王育鹏, 裴连杰, 李秋龙, 等. 新一代战斗机全机地面强度试验技术 [J]. 航空学报, 2020, 41(6): 523482.
|
|
WANG Y P, PEI L J, LI Q L, et al. Full-scale aircraft strength test technology of next generation fighter[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6): 523482 (in Chinese).
|
| [32] |
HILFER G, TUSCH O, WU D, et al. Changing the philosophy of full-scale-fatigue-tests derived from 50 years of IABG experience towards a virtual environment[C]∥ICAF 2019-Structural Integrity in the Age of Additive Manufacturing. 2019: 723-735.
|
| [33] |
CHIARIELLO A, PERILLO G, LINARI M, et al. Virtual full scale static test of a civil tilt rotor composite wing in non-linear regime[J]. Aerospace Engineering Technology, 2024, 11(4): 278.
|
| [34] |
王彬文, 聂小华, 万春华, 等. 全机静强度虚拟试验技术研究及应用 [J]. 航空学报, 2022, 43(6): 526273.
|
|
WANG B W, NIE X H, WAN C H, et al. Research and application of virtual test technology for static strength of full scale aircraft structure[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 526273 (in Chinese).
|
| [35] |
丁兰, 杨吉新, 朱伟伟. 基于粘滞阻尼器不同计算模型的斜拉桥地震反应分析[J]. 中外公路, 2011, 31(2): 140-145.
|
|
DING L, YANG J X, ZHU W W. Seismic response analysis of cable-stayed bridges based on different computational models of viscous dampers[J]. Journal of China & Foreign Highway, 2011, 31(2): 140-145 (in Chinese).
|