航空学报 > 2024, Vol. 45 Issue (S1): 730800-730800   doi: 10.7527/S1000-6893.2024.30800

基于改进“当前”统计模型的再入目标跟踪算法

贺杨超, 李炯, 邵雷(), 卜祥伟, 张锦林, 姬博洋   

  1. 空军工程大学 防空反导学院,西安 710051
  • 收稿日期:2024-06-05 修回日期:2024-06-24 接受日期:2024-08-01 出版日期:2024-08-21 发布日期:2024-08-20
  • 通讯作者: 邵雷 E-mail:zj_shaolei_2021@163.com
  • 基金资助:
    国家自然科学基金(62173339)

Reentry target tracking algorithm based on improved “current” statistical model

Yangchao HE, Jiong LI, Lei SHAO(), Xiangwei BU, Jinlin ZHANG, Boyang JI   

  1. Air and Missile Defense College,Air Force Engineering University,Xi’an 710051,China
  • Received:2024-06-05 Revised:2024-06-24 Accepted:2024-08-01 Online:2024-08-21 Published:2024-08-20
  • Contact: Lei SHAO E-mail:zj_shaolei_2021@163.com
  • Supported by:
    National Natural Science Foundation of China(62173339)

摘要:

在再入目标跟踪时,“当前”统计模型(CS)需要依据经验预设加速度方差极限值,当预先设定值和目标实际运动不匹配时,会造成较大的跟踪误差。为克服上述问题,本文在针对常规目标提出的加速度方差自适应算法的基础上,对目标状态滤波值和预测值形成的加速度增量进行缩放,使其提供的加速度方差能够适应再入目标的机动强度;算法中不同机动模式的缩放系数则通过设置包含均方根误差和均值的目标函数,分别使用粒子群优化算法得到。仿真结果表明,本文所提算法能够稳定跟踪典型机动模式下的再入目标状态值,和其他算法相比,具有更高的跟踪精度。

关键词: “当前”统计模型, 加速度方差自适应, 再入目标, 缩放系数, 粒子群优化算法

Abstract:

When tracking re-entry targets, the “Current” Statistical Model typically presets the acceleration variance limit based on experience. However, mismatches between this preset value and the target’s actual motion can result in significant tracking errors. To overcome this issue, this paper introduces an enhancement of the conventional acceleration variance adaptive algorithm tailored specifically for reentry targets. The acceleration increment derived from the target state filter value and its predicted counterpart is scaled, enabling the algorithm’s acceleration variance to dynamically adjust to the varying maneuvering intensity of the reentry target. The scaling coefficients for distinct maneuvering modes within this algorithm are optimized using the particle swarm optimization algorithm, which minimizes an objective function comprising both the root mean square error and the mean value. Simulation results demonstrate that the proposed algorithm can stably track the state values of reentry targets in typical maneuvering modes, exhibiting higher tracking accuracy compared to other algorithms.

Key words: “current” statistical model, acceleration variance adaptation, reentry target, scaling coefficient, particle swarm optimization (PSO) algorithm

中图分类号: