1 |
ENVIA E. Fan noise reduction: an overview[J]. International Journal of Aeroacoustics, 2002, 1(1): 43-64.
|
2 |
ENVIA E, WILSON A G, HUFF D L. Fan noise: A challenge to CAA[J]. International Journal of Computational Fluid Dynamics, 2004, 18(6): 471-480.
|
3 |
TAM C K W. Computational aeroacoustics: an overview of computational challenges and applications[J]. International Journal of Computational Fluid Dynamics, 2004, 18(6): 547-567.
|
4 |
NVIDA CUDA c programming guide[EB/OL]. [2020-10-31]. .
|
5 |
NVIDIA A 100 tensor core GPU[EB/OL]. [2020-10-31]. .
|
6 |
Intel Xeon Platinum 8376HL Processor[EB/OL]. [2020-10-31]. .
|
7 |
NVIDIA H 100 tensor core GPU[EB/OL]. [2022-10-31]. .
|
8 |
鞠鹏飞, 宁方飞. GPU平台上的叶轮机械CFD加速计算[J]. 航空动力学报, 2014, 29(5): 1154-1162.
|
|
JU P F, NING F F. Accelerated CFD computing of turbomachinery on GPU platform[J]. Journal of Aerospace Power, 2014, 29(5): 1154-1162 (in Chinese).
|
9 |
张翔, 黄秀全. 基于图形处理器加速的叶轮机流场数值模拟研究[J]. 科学技术与工程, 2013, 13(11): 3195-3199.
|
|
ZHANG X, HUANG X Q. An accelerated numerical simulation research on flows in turbomachines based on graphics hardware[J]. Science Technology and Engineering, 2013, 13(11): 3195-3199 (in Chinese).
|
10 |
曹文斌, 李桦, 谢文佳, 等. 应用多GPU的可压缩湍流并行计算[J]. 国防科技大学学报, 2015, 37(3): 78-83.
|
|
CAO W B, LI H, XIE W J, et al. Parallel computation of compressible turbulence using multi-GPU clusters[J]. Journal of National University of Defense Technology, 2015, 37(3): 78-83 (in Chinese).
|
11 |
吴建松, 许声弟, 胡啸峰. 基于光滑粒子流体动力学方法与GPU并行计算的阶梯流数值模拟[J]. 科学技术与工程, 2016, 16(23): 59-63.
|
|
WU J S, XU S D, HU X F. Numerical modeling of flooding over underground staircases using GPU-based SPH method[J]. Science Technology and Engineering, 2016, 16(23): 59-63 (in Chinese).
|
12 |
ZIMMERMAN B J, WANG Z J, VISBAL M R. High-order spectral difference: Verification and acceleration using GPU computing[C]∥ Proceedings of the 21st AIAA Computational Fluid Dynamics Conference. Reston: AIAA, 2013.
|
13 |
MIAO S M, ZHANG X, PARCHMENT O G, et al. A fast GPU based bidiagonal solver for computational aeroacoustics[J]. Computer Methods in Applied Mechanics and Engineering, 2015, 286: 22-39.
|
14 |
VERMEIRE B C, WITHERDEN F D, VINCENT P E. On the utility of GPU accelerated high-order methods for unsteady flow simulations: A comparison with industry-standard tools[J]. Journal of Computational Physics, 2017, 334: 497-521.
|
15 |
VANDENHOECK R, LANI A. Implicit high-order flux reconstruction solver for high-speed compressible flows[J]. Computer Physics Communications, 2019, 242: 1-24.
|
16 |
LIU Y, VINOKUR M, WANG Z J. Spectral difference method for unstructured grids I: Basic formulation[J]. Journal of Computational Physics, 2006, 216(2): 780-801.
|
17 |
WANG Z J, LIU Y, MAY G, et al. Spectral difference method for unstructured grids II: Extension to the Euler equations[J]. Journal of Scientific Computing, 2007, 32(1): 45-71.
|
18 |
SUN Y Z, WANG Z J, LIU Y. High-order multidomain spectral difference method for the navier-stokes equations[C]∥ Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2006: AIAA2006-301.
|
19 |
GAO J H. A sliding-mesh interface method for three dimensional high order spectral difference solver[J]. Journal of Computational Physics, 2022, 454: 110988.
|
20 |
STANESCU D, HABASHI W G. 2N-storage low dissipation and dispersion runge-kutta schemes for computational acoustics[J]. Journal of Computational Physics, 1998, 143(2): 674-681.
|
21 |
HERGT A, MEYER R, LIESNER K, et al. A new approach for compressor endwall contouring[C]∥Proceedings of ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. New York: ASME, 2011: 177-186.
|
22 |
DUAN Z W, JIA F L, WANG Z J. Sliding mesh and arbitrary periodic interface approaches for the high order FR/CPR method[C]∥ Proceedings of the AIAA Scitech 2020 Forum. Reston: AIAA, 2020.
|
23 |
SUTLIFF D L. A 20 year retrospective of the advanced noise control fan–contributions to turbofan noise research[C]∥ Proceedings of the AIAA Propulsion and Energy 2019 Forum. Reston: AIAA, 2019.
|
24 |
HU F. On the construction of PML absorbing boundary condition for the non-linear Euler equations[C]∥Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2006.
|
25 |
BU H X, HUANG X, ZHANG X. A compressive-sensing-based method for radial mode analysis of aeroengine fan noise[J]. Journal of Sound and Vibration, 2020, 464: 114930.
|
26 |
MANN A, PEROT F, KIM M S, et al. Advanced noise control fan direct aeroacoustics predictions using a lattice-boltzmann method[C]∥ Proceedings of the 18th AIAA/CEAS Aeroacoustics Conference (33rd AIAA Aeroacoustics Conference). Reston: AIAA, 2012.
|
27 |
MCALLISTER J, LOEW R, LAUER J, et al. The advanced noise control fan baseline measurements[C]∥ Proceedings of the 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2009.
|
28 |
DAROUKH M, LE GARREC T, POLACSEK C. Low-speed turbofan aerodynamic and acoustic prediction with an isothermal lattice boltzmann method[J]. AIAA Journal, 2022, 60(2): 1152-1170.
|