李玉涵1,2, 杨宝玉1,2(), 吴亦农1,2, 张强1, 唐晓1,2
收稿日期:
2023-04-04
修回日期:
2023-04-21
接受日期:
2023-07-18
出版日期:
2024-03-25
发布日期:
2023-07-24
通讯作者:
杨宝玉
E-mail:byyang@mail.sitp.ac.cn
基金资助:
Yuhan LI1,2, Baoyu YANG1,2(), Yinong WU1,2, Qiang ZHANG1, Xiao TANG1,2
Received:
2023-04-04
Revised:
2023-04-21
Accepted:
2023-07-18
Online:
2024-03-25
Published:
2023-07-24
Contact:
Baoyu YANG
E-mail:byyang@mail.sitp.ac.cn
Supported by:
摘要:
卫星光机载荷的光学效能与热设计密切相关,热控系统的模型修正是热设计必不可少的环节。近年国内外涌现出许多基于深度学习和寻优算法的提高热模型修正效率和精确度的方法可供参考,但没有进行系统的归纳。本文针对新出现的修正方法进行了总结,重点分析了在卫星光机载荷热控模型修正这一特殊问题中提高修正效率的几种手段——合适的寻优算法、构建代理模型和开发自动修正工具等。具体分析了这3种手段各自的研究进展及其适用条件和局限性,并提出了对于修正工具开发的思考。最后,对卫星光机载荷热控模型修正领域进行了展望,为后续提高热模型精确度和修正效率提供了方向。
中图分类号:
李玉涵, 杨宝玉, 吴亦农, 张强, 唐晓. 卫星光机载荷热模型参数高效修正方法研究进展[J]. 航空学报, 2024, 45(6): 628814-628814.
Yuhan LI, Baoyu YANG, Yinong WU, Qiang ZHANG, Xiao TANG. Research on parameters correction method for thermal model of satellite optomechanical load[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 628814-628814.
表 2
梯度算法对比
算法 | 原理 | 优势 | 劣势 |
---|---|---|---|
梯度下降法[ | 计算修正目标函数在一个初始解处的梯度,然后沿负梯度方向跨适当步长,不断重复这一过程,本质是一阶收敛 | 实现简单,应用广泛 | 其解不保证是全局最优解,梯度下降法的速度也未必是最快的 |
牛顿法[ | 利用局部的一阶和二阶偏导信息,推测整个函数的性状,进而求得近似函数的全局最小值,本质是二阶收敛 | 更快的收敛速度[ | 每一步都需要求解目标函数的Hessian矩阵的逆矩阵,计算比较复杂 |
BFGS法[ | 通过迭代构建近似Hesse矩阵,一定是正定的 | 可以解决问题规模比较大,计算量很大的无约束优化问题 | 依赖迭代的初始值,会碰到参数落入局部极值而无法求得全局最优解的问题 |
Broyden类的准牛顿法[ | 直接求解计算解与测量温度差值为零的方程组,基于前一步结果来近似雅科比矩阵,采用牛顿迭代法,用矩阵形式表达新一轮近似值[ | 更符合热模型修正的物理问题定义,可以求得全局最优解 | 解为一个特解,要求热模型是参数的单调且可微函数,卫星光机载荷热控系统经常用到的自动控温加热并不符合这一要求,需要在分析模型将控温逻辑转换为随时间变化的加热方式 |
表 4
参数修正问题类比
项目 | 热模型修正 | 结构模型修正 | |
---|---|---|---|
模型 | 物理模型 | 见 | 见 |
有限元模型 | 见 | 见 | |
联系 | 待修正参数 | 涂层吸收率 | 弹性模量E、质量密度ρ、截面积A、惯性矩 |
输出参数 | 输出为特征量 | 输出为特征量 式中: | |
目标 | 式中: | 式中: | |
流程图 | 见 | 见 | |
区别 | 维度 | 一般模型更为复杂,待修正参数维数更高,达到几十个。需要对其先进行敏感性分析 ,筛选出敏感参数。而且,过多的待修正参数会导致无法使用响应面法等处理低维问题的方法生成代理模型,基本只能借助于处理高维问题的神经网络的模型 | 一般模型较为简单,待修正参数相对较少,可以使用响应面法等建立代理模型 |
目标 | 一般为单目标无约束问题 | 一般为多目标有约束问题 |
表 5
其他领域不同代理模型优劣
模型名称 | 优势 | 劣势 |
---|---|---|
PR[ | 物理意义明确,易于理解,建模快速 | 适用于低阶非线性模型的近似 |
MARS | 属于回归算法,直接,快速 | 要求严格的假设且需要处理异常值 |
RBF | 平均精度高,鲁棒性好 | 需要较大样本量 |
Kriging | 在插值点即已知样本点上的响应值是准确无误差的,特别适合用来代替样本点响应值可视为准确无误差的模型(如计算机仿真模型) | 建模速度太慢,而且存在一些问题,比如对于某些响应值范围较大的目标函数,会出现过早收敛的情况 |
ANN | 可以充分逼近任意复杂的非线性关系,运算快,可学习,容错性高,算法可以快速调整,适应新的问题 | 会丢失部分信息,模型处于黑箱状态,难以理解内部机制 |
SVR[ | 在高维空间十分有效。即使数据的维度比样本数量还要大的情况下仍然有效 | 难以解释,要避免过拟合,解决大样本集、高输入维度和强非线性的模型时,SVR必须花费大量的计算时间来解决二次规划 |
表 6
航天热分析常用软件
热分析软件 | 所属公司 | 使用单位 | 应用领域 | 在航天热分析中的优势 | 局限性 |
---|---|---|---|---|---|
Nastran | MSC公司 | NASA、五菱汽车、东风汽车 | 航空航天、工业设备制造 | 解决传导、对流、辐射、相变、热控系统在内所有的热传导现象,模拟热控系统,进行热-结构耦合分析 | 主要用于已知边界条件的热力学分析,无轨道加热计算模块 |
Sinda类(Thermal-Desktop等前处理) | Network Analysis公司 | NASA、Boeing、 航天五院 | 航空航天、汽车、电子 | 构成参数可见,便于分析者控制,使用最广泛的热网络求解软件 | 前处理过程复杂,集成度不够 |
ANSYS | ANSYS公司 | NASA、中科 院、各大高校 | 航空航天、能源、交通 运输、土木建筑、水利、 电子 | 最著名的流动分析软件,流动方程求解功能强大 | 主要解决流动问题;卫星中需要将外热流或壁面温度作为已知边界;需要前处理软件 |
TMG(UG/NX或I-DEAS前处理) | 原MAYA,现西门子公司 | 福特、西门子、丰田、中科院 | 航空航天、电子设备、 工业设备制造 | 对辐射、外热流、热网络求解具有高集成度,功能丰富 | 模型不易检查和修改 |
COMSOL | COMSOL 公司 | NASA、北航、南航 | 轨道交通、航空航天、 电力电子 | 集成度高,主打多物理场,使用方便 | 2022年6.1版本中刚增加一个新的接口计算卫星在轨辐射热 |
NEVADA | TAC Technologies公司 | NASA | 航空航天 | 辐射分析功能十分强大; 易于对模型诊断控制 | 纯辐射分析(含外热流)软件;建模很不方便 |
表7
多学科优化软件对比
优化平台 软件 | 接口与开发 | 流程框架 | 优点 | 缺点 |
---|---|---|---|---|
Isight | 有ANSYS、Nastran接口,第三方软 件接口很丰富,且方便二次开发 | 闭环 | 方便针对不同优化问题进行优化策略的选择 | 元模型不够丰富,计算精度不够;文件设置比较混乱 |
Optimus | 有ANSYS、Nastran、UG/CAE接口,且方便二次开发 | 开环 | 试验设计方法(Design of Experiment,DOE)丰富;优化方法丰富,且适用范围广;元模型丰富 | 文件管理不方便,所有模块运行均在同一个文件夹下进行 |
Heeds | 第三方软件接口十分丰富,有ANSYS、NX、COMSOL接口,二次开发不方便 | 开环 | 流程较简洁;DOE方法较丰富 | 元模型不够丰富 |
Modefrontier | 有Nastran、NX接口,第三方软件接口很丰富,可以二次开发 | 开环 | DOE方法丰富;优化方法丰富,且适用范围广;元模型丰富 | 设置不便,流程繁多,设计因素都需要显式设置 |
LSOPT | 第三方软件接口很少,且二次开发不方便,主要是编程和ANSYS | 闭环 | 界面简洁,方便理解 | DOE方法不够丰富;优化算法不够丰富 |
1 | ROBSON A, HELLER C, SDUNNUS H. Space systems thermal analysis software - a user’s view[C]∥ Proceedings of the International Conference on Environmental Systems. Warrendale: SAE International, 2005. |
2 | HYE A, LIN C. Space station active thermal control system modeling[C]∥ Proceedings of the 26th Aerospace Sciences Meeting. Reston: AIAA, 1988. |
3 | LEE H P. Application of finite-element method in the computation of temperature with emphasis on radiative exchanges[C]∥ Proceedings of the 7th Thermophysics Conference. Reston: AIAA, 1972. |
4 | LEE H P, JACKSON C. Finite-element solution for a combined radiative-conductive analysiswith mixed diffuse-specular surface characteristics[C]∥ Proceedings of the 10th Thermophysics Conference. Reston: AIAA, 1975. |
5 | 苗建印, 钟奇, 赵啟伟. 航天器热控制技术[M]. 北京: 北京理工大学出版社, 2018. |
MIAO J Y, ZHONG Q, ZHAO Q W. Spacecraft thermal control technology[M]. Beijing: Beijing Insititute of Technology Press, 2018 (in Chinese). | |
6 | KIM J H, KIM B. Study on the reduction method of the satellite thermal mathematical model[J]. Advances in Engineering Software, 2017, 108: 37-47. |
7 | 锁斌, 程永生, 曾超. 不确定性处理方法及其在可靠性工程中的应用[C]∥ 全国信息与电子工程第五届学术年会暨四川省电子学会曙光分会第十六届学术年会. 成都:四川省电子学会, 2012. |
SUO B, CHEN Y S, ZENG C. Uncertainty processing methods and their application in reliability engineering[C]∥ The 5th Annual Academic Conference of National Information and Electronic engineering and the 16th Annual Academic Conference of Shuguang Branch of Sichuan Institute of Electronics. Chengdu: Sichuan Institute of Electronics, 2012.(in Chinese) | |
8 | 周海东. 含不确定性参数结构静动态特性的区间分析方法及其应用研究[D]. 哈尔滨: 哈尔滨工业大学, 2014. |
ZHOU H D. A study of interval analysis and application to static/dynamic characteristics of the structure with uncertain parameters[D]. Harbin: Harbin Institute of Technology, 2014 (in Chinese). | |
9 | 马羽. 考虑代理模型不确定性的结构统计灵敏度和可靠性分析方法研究[D]. 成都: 电子科技大学, 2017. |
MA Y. Structural statistical sensitivity analysis and reliability assessment considering metamodeling uncertainty[D]. Chengdu: University of Electronic Science and Technology of China, 2017 (in Chinese). | |
10 | 彭祖军. 复合材料热结构模型的不确定性分析和实验修正方法[D]. 哈尔滨: 哈尔滨工业大学, 2018. |
PENG Z J. Uncertainty analysis and experimental calibration methods of thermal structure model of composite materials[D]. Harbin: Harbin Institute of Technology, 2018 (in Chinese). | |
11 | 阮晓行. 考虑认知参数或多峰随机参数的不确定性分析方法[D]. 长沙: 湖南大学, 2018. |
RUAN X H. Uncertainty analysis methods considering epistemic parameters or multimodal aleatory parameters[D]. Changsha: Hunan University, 2018 (in Chinese). | |
12 | 王涵. 基于响应面的参数不确定性有限元模型修正研究[D]. 南京: 南京航空航天大学, 2021. |
WANG H. Research on finite element model updating of parameter uncertainty based on response surface method[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2021 (in Chinese). | |
13 | 程梅苏. 航天器瞬态热分析模型修正方法及应用研究[D]. 南京: 南京航空航天大学, 2016. |
CHENG M S. Research on correction method and application of the transient thermal model of spacraft[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016 (in Chinese). | |
14 | 闵桂荣. 卫星热控制技术[M]. 北京: 中国宇航出版社, 1991. |
MIN G R. Satellite thermal control technology[M]. Beijng: China Astronautic Publishing House, 1991 (in Chinese). | |
15 | HERRERA F L, SEPÚLVEDA A T. Stochastic approach to spacecraft thermal control subsystem[C]∥ Proceedings of the International Conference on Environmental Systems. Copenhagen: ICES, 2000. |
16 | TORRALBO I, PEREZ-GRANDE I, SANZ-ANDRES A, et al. Correlation of spacecraft thermal mathematical models to reference data[J]. Acta Astronautica, 2018, 144: 305-319. |
17 | TORRES A, MISHKINIS D, KAYA T. Mathematical modeling of a new satellite thermal architecture system connecting the east and west radiator panels and flight performance prediction[J]. Applied Thermal Engineering, 2014, 65(1-2): 623-632. |
18 | BECK T, BIELER A, THOMAS N. Numerical thermal mathematical model correlation to thermal balance test using adaptive particle swarm optimization (APSO)[J]. Applied Thermal Engineering, 2012, 38: 168-174. |
19 | DOENECKE J. Adjustment of a thermal mathematical model to test data[J]. Journal of Spacecraft and Rockets, 1970, 7(6): 720-726. |
20 | TOUSSAINT M. Verification of the thermal mathematical model for artificial satellites - a new test philosophy[C]∥ Proceedings of the 2nd Thermophysics Specialist Conference. Reston: AIAA, 1967. |
21 | SHIMOJI S. A comparison of thermal network correction methods[C]∥ Proceedings of the 16th Thermophysics Conference. Reston: AIAA, 1981. |
22 | 王家映. 地球物理资料非线性反演方法讲座(二) 蒙特卡洛法[J]. 工程地球物理学报, 2007, 4(2): 81-85. |
WANG J Y. Lecture on non-linear inverse methods in geophysics (Ⅱ) Monte Carlo method[J]. Chinese Journal of Engineering Geophysics, 2007, 4(2): 81-85 (in Chinese). | |
23 | TOUSSAINT M. Verification of the thermal mathematical model for artificial satellites: A new test philosophy[M]∥ Thermophysics of Spacecraft and Planetary Bodies. Amsterdam: Elsevier, 1967: 611-629. |
24 | ISHIMOTO T, GASKI J D, FINK L C. Development of digital computer program for thermal network correction: NASA-CR-108681[R]. Washington, D.C.: NASA, 1970. |
25 | 闵桂荣, 姜贵庆, 侯增祺, 等. 美国空间热物理研究近况[J]. 国外空间技术, 1979(3): 1-23. |
MIN G R, JIANG G Q, HOU Z Q, et al. Recent status of space thermophysics research in the United States[J]. Foreign Space Technology, 1979(3): 1-23 (in Chinese). | |
26 | 翁建华, 闵桂荣, 潘增富. 利用稳态数据修正航天器热网络方程及其系数[J]. 工程热物理学报, 1998, 19(2): 218-223. |
WENG J H, MIN G R, PAN Z F. Correcting spacecraft thermal network and its coefficients with ultimate thermal vacuum test data[J]. Journal of Engineering Thermophysics, 1998, 19(2): 218-223 (in Chinese). | |
27 | HARVEY S, LEBRU A, KERNER R, et al. Thermal design of the Envisat-1 ASAR active antenna[C]∥ Proceedings of the Sixth European Symposium on Space Environmental Control Systems. Paris: ESA, 1997. |
28 | MAURO J C. Monte Carlo techniques[M]∥ Materials Kinetics. Amsterdam: Elsevier, 2021: 443-466. |
29 | DUVIGNACQ C, HESPEL L, ROZÉ C, et al. Modelling of white paints optical degradation using Mie’s theory and Monte Carlo method[C]∥ Proceedings of the 9th International Symposium on Materials in a Space Environment. Paris: ESA, 2003: 399-406. |
30 | ANGLADA E, MARTINEZ-JIMENEZ L, GARMENDIA I. Performance of gradient-based solutions versus genetic algorithms in the correlation of thermal mathematical models of spacecrafts[J]. International Journal of Aerospace Engineering, 2017, 2017: 1-12. |
31 | GÓMEZ-SAN-JUAN A, PÉREZ-GRANDE I, SANZ-ANDRÉS A. Uncertainty calculation for spacecraft thermal models using a generalized SEA method[J]. Acta Astronautica, 2018, 151: 691-702. |
32 | GARMENDIA I, ANGLADA E. Thermal parameters identification in the correlation of spacecraft thermal models against thermal test results[J]. Acta Astronautica, 2022, 191: 270-278. |
33 | GARMENDIA I, ANGLADA E. Transient thermal parameters correlation of spacecraft thermal models against test results[J]. Acta Astronautica, 2022, 199: 49-57. |
34 | 钟奇, 潘维, 王玉莹, 等. 航天器热模型修正技术进展研究[J]. 航天器工程, 2021, 30(1): 64-71. |
ZHONG Q, PAN W, WANG Y Y, et al. Survey of spacecraft thermal model correlation technology development[J]. Spacecraft Engineering, 2021, 30(1): 64-71 (in Chinese). | |
35 | 樊越. 航空相机光机热分析与热控技术研究[D]. 成都: 中国科学院研究生院(光电技术研究所), 2013. |
FAN Y. Thermal/structural/optical analysis and thermal control technique of aerial camera[D]. Chengdu: Institute of Optics and Electronics, Chinese Academy of Sciences, 2013 (in Chinese). | |
36 | 李强. CO2探测仪热设计及热分析模型修正技术研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2017. |
LI Q. Study on the thermal design for carbon dioxide and technique of thermal analysis model correction[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2017 (in Chinese). | |
37 | 吴愉华. 地球静止轨道太阳X-EUV成像仪探测器组件热控技术研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2019. |
WU Y H. Study on the thermal control technique for detector components in geostationary solar X-EUV imager[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2019 (in Chinese). | |
38 | 杨雨霆. 高空气球平台地—月成像光谱仪载荷系统热控技术研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2020. |
YANG Y T. Study on the thermal control technique for Earth-Moon imaging spectrometer load system for high-altitude balloon[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2020 (in Chinese). | |
39 | 李世俊. 太阳X-EUV成像仪热控关键技术研究[D].长春:中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2020. |
LI S J. Study on the key technique of thermal control for solar X-ray and extreme ultraviolet imager[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2020.(in Chinese) | |
40 | 杨沪宁, 钟奇. 航天器热模型蒙特卡罗法修正论述[J]. 航天器工程, 2009, 18(3): 53-58. |
YANG H N, ZHONG Q. Monte-carlo method for thermal model correction of spacecraft[J]. Spacecraft Engineering, 2009, 18(3): 53-58 (in Chinese). | |
41 | 张镜洋, 常海萍, 王立国. 小卫星瞬态热分析模型修正方法[J]. 中国空间科学技术, 2013, 33(4): 24-30. |
ZHANG J Y, CHANG H P, WANG L G. Correction method for transient thermal analysis model of small satellite[J]. Chinese Space Science and Technology, 2013, 33(4): 24-30 (in Chinese). | |
42 | KIM K W, BAEK S W, KIM M Y, et al. Estimation of emissivities in a two-dimensional irregular geometry by inverse radiation analysis using hybrid genetic algorithm[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2004, 87(1): 1-14. |
43 | KLEMENT J. On using quasi-newton algorithms of the broyden class for model-to-test correlation[J]. Journal of Aerospace Technology and Management, 2014, 6(4): 407-414. |
44 | ANGLADA E, GARMENDIA I. Correlation of thermal mathematical models for thermal control of space vehicles by means of genetic algorithms[J]. Acta Astronautica, 2015, 110: 355. |
45 | 黄芳, 樊晓平. 基于岛屿群体模型的并行粒子群优化算法[J]. 控制与决策, 2006, 21(2): 175-179, 188. |
HUANG F, FAN X P. Parallel particle swarm optimization algorithm with island population model[J]. Control and Decision, 2006, 21(2): 175-179, 188 (in Chinese). | |
46 | HU X Z, CHEN X Q, ZHAO Y, et al. Optimization design of satellite separation systems based on multi-island genetic algorithm[J]. Advances in Space Research, 2014, 53(5): 870-876. |
47 | YUAN C, LI L, LUO X B. Heat conduction optimization of anisotropic composite material using simulated annealing algorithm[C]∥ Proceedings of the 15th International Heat Transfer Conference. London: AIHTC, 2014. |
48 | 李楠. 基于遗传算法的瞬态非线性热传导反问题研究[D]. 大连: 大连理工大学, 2014. |
LI N. Research on transient non-linear inverse heat conduction problems based on a genetic algorithm[D]. Dalian: Dalian University of Technology, 2014 (in Chinese). | |
49 | 李航. 统计学习方法[M]. 北京: 清华大学出版社, 2012. |
LI H. Statistical learning method[M]. Beijing: Tsinghua University Press, 2012 (in Chinese). | |
50 | TALHAMAINUDDIN ANSARY M ABU. A Newton-type proximal gradient method for nonlinear multi-objective optimization problems[J]. Optimization Methods and Software, 2023, 38(3): 570-590. |
51 | CARTIS C, GOULD N I M, TOINT P L. On the complexity of steepest descent, Newton’s and regularized Newton’s methods for nonconvex unconstrained optimization problems[J]. SIAM Journal on Optimization, 2010, 20(6): 2833-2852. |
52 | 李守巨. 基于计算智能的岩土力学模型参数反演方法及其工程应用[D]. 大连: 大连理工大学, 2004. |
LI S J. Parameter identification procedures in geotechnical engineering with computational intelligences and their applications[D]. Dalian: Dalian University of Technology, 2004 (in Chinese). | |
53 | KLEMENT J, ANGLADA E, GARMENDIA I. Advances in automatic thermal model to test correlation in space industry[C]∥ Proceedings of the 46th International Conference on Environmental Systems.Copenhagen: ICES, 2016. |
54 | 徐萃薇, 孙绳武. 计算方法引论[M].3版. 北京: 高等教育出版社, 2007. |
XU C W, SUN S W. Introduction to numerical calculation methods[M].3rd ed. Beijing: Higher Education Press, 2007 (in Chinese). | |
55 | 陈文. 基于灵敏度与模拟退火方法的模型修正及软件二次开发[D]. 南京: 南京航空航天大学, 2008. |
CHEN W. Model updating and redevelopment based on sensitivity and simulated annealing method[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2008 (in Chinese). | |
56 | 王晓军, 倪博文, 王磊, 等. 一种基于超体积迭代策略的全局寻优算法[C]∥ 中国力学大会.北京:中国力学学会, 2017: 1164-1175. |
WANG X J, NI B W, WANG L, et al. A global optimization algorithm based on Hyper-volume Iteration (HVI)[C]∥ Proceedings of the Chinese Congress of Theoretical and Applied Mechanics. Beijing: CSTAM, 2017: 1164-1175 (in Chinese). | |
57 | GHOSH S, MONDAL S, KAPAT J S, et al. Shape optimization of pin fin arrays using Gaussian process surrogate models under design constraints[C]∥ Proceedings of ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. London: ASME, 2020. |
58 | XIONG Y, GUO L, TIAN D F, et al. Intelligent optimization strategy based on statistical machine learning for spacecraft thermal design[J]. IEEE Access, 2020, 8: 204268-204282. |
59 | REZK H, BABU T S, AL-DHAIFALLAH M, et al. A robust parameter estimation approach based on stochastic fractal search optimization algorithm applied to solar PV parameters[J]. Energy Reports, 2021, 7: 620-640. |
60 | YANG C, HOU X B. Iterative two-layer thermal design strategy for step sandwich antenna of space solar power satellite using modified constrained multi-objective optimization[J]. Aerospace Science and Technology, 2021, 118: 106987. |
61 | OTAKI D, NONAKA H, YAMADA N. Thermal design optimization of electronic circuit board layout with transient heating chips by using Bayesian optimization and thermal network model[J]. International Journal of Heat and Mass Transfer, 2022, 184: 122263. |
62 | CHANG R L, HAN J, DUAN R X, et al. Optimization of geometric parameters of gear shaper cutter based on multi-island genetic algorithm[C]∥ Proceedings of the 2021 7th International Conference on Computing and Artificial Intelligence. New York: ACM, 2021: 446-451. |
63 | BABALıK A, İŞCAN H, BABAOĞLU İ, et al. An improvement in fruit fly optimization algorithm by using sign parameters[J]. Soft Computing, 2018, 22(22): 7587-7603. |
64 | VENKATESHWAR RAO B, PANDA S. Spider monkey optimization algorithm-based optimal design of wideband EBG structure for certain uncertainty parameters[J]. Journal of Uncertain Systems, 2023, 16(1): 2242004. |
65 | SHAHSAVANI D, GRIMVALL A. Variance-based sensitivity analysis of model outputs using surrogate models[J]. Environmental Modelling & Software, 2011, 26(6): 723-730. |
66 | YANG Y T, CHEN L H, XIONG Y, et al. Global sensitivity analysis based on BP neural network for thermal design parameters[J]. Journal of Thermophysics and Heat Transfer, 2021, 35(1): 187-199. |
67 | 员婉莹. 结构可靠性及全局灵敏度分析算法研究[D]. 西安: 西北工业大学, 2019. |
YUN W Y. Research on algorithms of reliability analysis and global sensitivity analysis of the structures[D]. Xi’an: Northwestern Polytechnical University, 2019 (in Chinese). | |
68 | 熊琰. 基于深度学习的空间望远镜智能自主热控关键技术研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2022. |
XIONG Y. Research on the key technology of intelligent thermal control for space telescope based on deep learning[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2022 (in Chinese). | |
69 | 周志华. 机器学习[M]. 北京: 清华大学出版社, 2016. |
ZHOU Z H. Machine learning[M]. Beijing: Tsinghua University Press, 2016 (in Chinese). | |
70 | HERRERA L J, POMARES H, ROJAS I, et al. Global and local modelling in RBF networks[J]. Neurocomputing, 2011, 74(16): 2594-2602. |
71 | 陆强华. 基于径向基函数神经网络的结构可靠性分析[J]. 中国科技信息, 2008(5): 234-235. |
LU Q H. Structural reliability analysis based on radial basis function neural network[J]. China Science and Technology Information, 2008(5): 234-235 (in Chinese). | |
72 | PALAR P S, PARUSSINI L, BREGANT L, et al. Composite kernel functions for surrogate modeling using recursive multi-fidelity kriging[C]∥ Proceedings of the AIAA SCITECH 2022 Forum. Reston: AIAA, 2022. |
73 | 张崎. 基于Kriging方法的结构可靠性分析及优化设计[D]. 大连: 大连理工大学, 2005. |
ZHANG Q. Structural reliability analysis and optimization based on kriging technique[D]. Dalian: Dalian University of Technology, 2005 (in Chinese). | |
74 | WELCH W J, BUCK R J, SACKS J, et al. Screening, predicting, and computer experiments[J]. Technometrics, 1992, 34(1): 15. |
75 | 窦毅芳, 刘飞, 张为华. 响应面建模方法的比较分析[J]. 工程设计学报, 2007, 14(5): 359-363. |
DOU Y F, LIU F, ZHANG W H. Research on comparative analysis of response surface methods[J]. Journal of Engineering Design, 2007, 14(5): 359-363 (in Chinese). | |
76 | 韩彦彬, 白广忱, 李晓颖, 等. 基于支持向量机柔性机构动态可靠性分析[J]. 机械工程学报, 2014, 50(11): 86-92. |
HAN Y B, BAI G C, LI X Y, et al. Dynamic reliability analysis of flexible mechanism based on support vector machine[J]. Journal of Mechanical Engineering, 2014, 50(11): 86-92 (in Chinese). | |
77 | ZHANG K S, HE S J, HAN Z H. Comparative studies of support vector regression and kriging - theory and applications[C]∥ Proceedings of the 2018 Multidisciplinary Analysis and Optimization Conference. Reston: AIAA, 2018. |
78 | ZHAO L A, CHOI K K, LEE I. Metamodeling method using dynamic kriging for design optimization[J]. AIAA Journal, 2011, 49(9): 2034-2046. |
79 | ZHENG J, SHAO X Y, GAO L A, et al. A hybrid variable-fidelity global approximation modelling method combining tuned radial basis function base and kriging correction[J]. Journal of Engineering Design, 2013, 24(8): 604-622. |
80 | TAO J, SUN G. Application of deep learning based multi-fidelity surrogate model to robust aerodynamic design optimization[J]. Aerospace Science and Technology, 2019, 92: 722-737. |
81 | BARTZ-BEIELSTEIN T, REHBACH F, SEN A, et al. Surrogate model based hyperparameter tuning for deep learning with SPOT[EB/OL]. 2021: arXiv: 2105.14625. |
82 | JIN R, CHEN W, SIMPSON T W. Comparative studies of metamodelling techniques under multiple modelling criteria[J]. Structural and Multidisciplinary Optimization, 2001, 23(1): 1-13. |
83 | BUCHER C G, BOURGUND U. A fast and efficient response surface approach for structural reliability problems[J]. Structural Safety, 1990, 7(1): 57-66. |
84 | DENG J. Structural reliability analysis for implicit performance function using radial basis function network[J]. International Journal of Solids and Structures, 2006, 43(11-12): 3255-3291. |
85 | RAJASHEKHAR M R, ELLINGWOOD B R. A new look at the response surface approach for reliability analysis[J]. Structural Safety, 1993, 12(3): 205-220. |
86 | BAESENS B, VIAENE S, GESTEL T V, et al. Least squares support vector machine classifiers: An empirical evaluation[J]. Access & Download Statistics, 2000, 3: 2376. |
87 | FREY B, BOHNE N, BRUNO M. Development, benchmarking and validation of an automated thermal model correlation tool[C]∥ Proceedings of the 46th International Conference on Environmental Systems. Copenhagen: ICES, 2016: 303. |
88 | FREY B, TRINOGA M, HOPPE M, et al. Development of an automated thermal model correlation method and tool[C]∥ Proceedings of the 45th International Conference on Environmental Systems. Copenhagen: ICES, 2015: 12-16. |
89 | 李欢欢. 星载天线热分析平台的研究与开发[D]. 西安: 西安电子科技大学, 2008. |
LI H H. Research and development of thermal analysis platform for satellite antenna[D]. Xi’an: Xidian University, 2008 (in Chinese). | |
90 | 李欢欢, 朱敏波, 张庞岭. I-DEAS二次开发技术在星载天线热分析中的应用[J]. 机械设计与制造, 2008(7): 92-94. |
LI H H, ZHU M B, ZHANG P L. Application of secondary development technology based-on I-DEAS in the thermal analysis for satellite antenna[J]. Machinery Design & Manufacture, 2008(7): 92-94 (in Chinese). | |
91 | 施道云, 杨光, 张卫国, 等. 基于Isight/Fluent联合仿真的热模型修正方法研究[J]. 科学技术与工程, 2016, 16(4): 205-209, 220. |
SHI D Y, YANG G, ZHANG W G, et al. Thermal model modifying based on the combination of isight and fluent[J]. Science Technology and Engineering, 2016, 16(4): 205-209, 220 (in Chinese). |
[1] | 崔壮壮, 原昕, 赵国庆, 井思梦, 招启军. 共轴刚性旋翼高速直升机前飞性能操纵策略影响[J]. 航空学报, 2024, 45(9): 529256-529256. |
[2] | 柳家齐, 陈荣钱, 楼锦华, 韩旭, 吴昊, 尤延铖. 基于深度学习的高速直升机旋翼翼型气动优化设计[J]. 航空学报, 2024, 45(9): 529828-529828. |
[3] | 王宗辉, 杨云军, 赵弘睿, 王雪晨. 多飞行状态倾转旋翼气动优化设计[J]. 航空学报, 2024, 45(9): 529024-529024. |
[4] | 张薇, 何若俊. 面向物联网数据收集的无人机自主路径规划[J]. 航空学报, 2024, 45(8): 329054-329054-1. |
[5] | 陈树生, 冯聪, 张兆康, 赵轲, 张新洋, 高正红. 基于全局/梯度优化方法的宽速域乘波-机翼布局气动设计[J]. 航空学报, 2024, 45(6): 629596-629596. |
[6] | 张春云, 陈雄斌, 刘健, 崔苗. 酚醛树脂气凝胶复合材料热物性参数预测方法[J]. 航空学报, 2024, 45(6): 428848-428848. |
[7] | 尹洪玉, 吴宇, 梁天骄. 固定翼无人机巡逻覆盖协同路径规划方法[J]. 航空学报, 2024, 45(6): 328944-328944. |
[8] | 倪育德, 闫苗玉, 刘瑞华. 基于DOA-BP神经网络的电离层TEC短期预测[J]. 航空学报, 2024, 45(4): 328707-328707. |
[9] | 郑志瀛, 谭鸽伟, 蒋丁一. 基于双向重采样的高分辨率前视成像算法[J]. 航空学报, 2024, 45(4): 328749-328749. |
[10] | 王祝, 张梦通, 张振鹏, 徐广通. 基于多指标动态优先级的无人机协同路径规划[J]. 航空学报, 2024, 45(4): 328816-328816. |
[11] | 王四季, 张羽薇, 黄开明, 吕彪, 赵海凤, 王虎, 廖明夫. 基于改进粒子群算法的直升机动力涡轮转子系统优化方法[J]. 航空学报, 2024, 45(1): 228608-228608. |
[12] | 周易, 陈建, 韩宇, 张悦, 贾凤聪. 基于鱼类交互行为的鱼类集群规则[J]. 航空学报, 2023, 44(S2): 729793-729793. |
[13] | 杨倩, 郑皓冉, 程显达, 董威. 基于引气控制的热气防冰优化设计方法[J]. 航空学报, 2023, 44(S2): 729285-729285. |
[14] | 程晓玉, 韩鹏, 贺维, 张朋, 韩晓霞, 李英梅, 曹友. 一种新的基于可解释性置信规则库的飞轮健康状态评估模型[J]. 航空学报, 2023, 44(S1): 172-184. |
[15] | 朱云冲, 梁彦刚, 黎克波, 刘远贺. 基于PSO和RRT的智能弹群任务分配算法[J]. 航空学报, 2023, 44(S1): 727354-727354. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 113
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 261
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学