收稿日期:
2022-11-11
修回日期:
2022-11-23
接受日期:
2023-01-17
出版日期:
2023-03-06
发布日期:
2023-02-10
通讯作者:
牛斌
E-mail:niubin@dlut.edu.cn
基金资助:
Jian HAN, Shiyong SUN, Bin NIU(), Rui YANG, Dongjiang WU
Received:
2022-11-11
Revised:
2022-11-23
Accepted:
2023-01-17
Online:
2023-03-06
Published:
2023-02-10
Contact:
Bin NIU
E-mail:niubin@dlut.edu.cn
Supported by:
摘要:
树脂基复合材料点阵结构集点阵结构与复合材料优势于一体,是实现飞行器等高端装备结构轻量化、功能化与智能化的理想结构材料。然而,由于复合材料点阵结构的材料高度各向异性、结构跨尺度、几何拓扑构型复杂、多功能集成设计需求等特征,导致复合材料点阵结构的制造技术存在诸多难题与挑战。本文回顾了复合材料点阵结构的发展历程,重点围绕近年来国内外在制造技术方面的研究与突破,根据点阵芯体的核心成形工艺,在给出制造技术分类与优缺点分析的基础上,总结了影响点阵结构成形质量的关键工艺,进一步剖析了制约当前复合材料点阵结构制造技术发展的问题,最后对复合材料点阵结构制造领域的未来发展趋势进行了展望。
中图分类号:
韩剑, 孙士勇, 牛斌, 杨睿, 吴东江. 树脂基复合材料点阵结构的制造技术研究进展[J]. 航空学报, 2023, 44(9): 628255-628255.
Jian HAN, Shiyong SUN, Bin NIU, Rui YANG, Dongjiang WU. Progress in manufacturing technologies of resin⁃based composite lattice structures[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(9): 628255-628255.
表1
复合材料点阵结构制造技术
类型 | 芯体制备技术 | 面芯连接方式 | 工艺优势 | 工艺局限性 |
---|---|---|---|---|
模压技术 | 卷制芯体[ | 预浸料棒埋入面板,面芯共固化 | 面芯连接质量高,杆件成形质量高 | 对模具要求高,面板内引入了层间间隙等损伤 |
叠层芯体[ | 面芯分别成形;胶粘连接 | 杆件成形质量高 | 对模具要求高,面芯连接质量差,交叉铺放位置易出现分层 | |
2D预制体[ | 面芯通过界面相连,在热压作用下共固化 | 面芯连接质量高,密度变化范围大 | 基本构型受到限制;容易引入机械损伤 | |
组装技术 | 连续胞元[ | 芯体之间通过嵌锁组装;面芯之间通过胶粘连接 | 可加工结构丰富,可制备多层结构,设计潜力大 | 机械加工容易引入损伤;面芯连接质量差 |
离散胞元[ | 芯体之间通过嵌锁、组装等连接 | 可加工结构丰富,组装方式灵活,设计潜力大 | 胞元较多,组装工艺复杂,容易引入装配误差 | |
编织穿插技术 | 干法编织[ | 预浸料埋入面板,一体成形 | 面芯连接质量高,工艺流程简单 | 杆件截面形状不均匀;预制孔洞的面板有损伤 |
湿法编织[ | 纤维埋入面板,面芯共固化 | 可制备多层结构,尺寸参数变化大 | 纤维丝束较细;树脂较难均匀浸润;预制沟槽的面板有损伤 | |
原位成形技术 | 自动铺放[ | 面芯各自成形,通过胶粘连接 | 自动化程度高,工艺过程可实时监测,材料均匀性好 | 交叉铺放位置出现易分层区域;构型与尺寸受限 |
3D连续碳纤维打印[ | 面芯各自成形,通过胶粘连接 | 自动化程度高,工艺过程可实时监测,模具依赖度低 | 成形时缺乏热压共同作用,质量缺乏保证;构型与尺寸受限;纤维含量低 |
1 | 吴林志, 熊健, 马力, 等. 新型复合材料点阵结构的研究进展[J]. 力学进展, 2012, 42(1): 41-67. |
WU L Z, XIONG J, MA L, et al. Processes in the study on novel composite sandwich panels with lattice truss cores[J]. Advances in Mechanics, 2012, 42(1): 41-67 (in Chinese). | |
2 | 范华林, 杨卫. 轻质高强点阵材料及其力学性能研究进展[J]. 力学进展, 2007, 37(1): 99-112. |
FAN H L, YANG W. Development of lattice materials with high specific stiffness and strength[J]. Advances in Mechanics, 2007, 37(1): 99-112 (in Chinese). | |
3 | 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1): 1-12. |
DU S Y. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica, 2007, 24(1): 1-12 (in Chinese). | |
4 | 赵天, 李营, 张超, 等.高性能航空复合材料结构的关键力学问题研究进展[J]. 航空学报, 2022, 43(6): 526851. |
ZHAO T, LI Y, ZHANG C, et al. Fundamental mechanical problems in high-performance aerospace composite structures: state-of-art review[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 526851 (in Chinese). | |
5 | 张卫红, 周涵, 李韶英, 等. 航天高性能薄壁构件的材料-结构一体化设计[J].航空学报,(2022-10-9),[2023-01-22]. doi:10.7527/S1000-6893.2022.27428 |
ZHANG W H, ZHOU H, LI S Y, et al. Material-structure integrated design for high-performance aerospace thin-walled component[J]. Acta Aeronautica et Astronautica Sinica, 2022-10-9), [2023-01-22]. doi:10.7527/S1000-6893.2022.27428 (in Chinese. | |
6 | 杨亚政, 杨嘉陵, 曾涛, 等. 轻质多孔材料研究进展[J]. 力学季刊, 2007, 28(4): 503-516. |
YANG Y Z, YANG J L, ZENG T, et al. Progress in research work of light materials[J]. Chinese Quarterly of Mechanics, 2007, 28(4): 503-516 (in Chinese). | |
7 | EVANS A G, HUTCHINSON J W, FLECK N A, et al. The topological design of multifunctional cellular metals[J]. Progress in Materials Science, 2001, 46(3-4): 309-327. |
8 | 杨卫, 范华林, 王斌, 等. 复合材料点阵结构[M]∥ 洪友士. 应用力学进展. 北京: 科学出版社, 2004:56-62. |
YANG W, FAN H L, WANG B, et al. Composite lattice structure[M]∥HONG Y S. Applied advances in mechanics. Beijing: Science Press, 2004:56-62 (in Chinese). | |
9 | FINNEGAN K, KOOISTRA G, WADLEY H N G, et al. The compressive response of carbon fiber composite pyramidal truss sandwich cores[J]. International Journal of Materials Research, 2007, 98(12): 1264-1272. |
10 | GEORGE T, DESHPANDE V S, WADLEY H N G. Mechanical response of carbon fiber composite sandwich panels with pyramidal truss cores[J]. Composites Part A: Applied Science and Manufacturing, 2013, 47: 31-40. |
11 | ZHANG G Q, MA L, WANG B, et al. Mechanical behaviour of CFRP sandwich structures with tetrahedral lattice truss cores[J]. Composites Part B: Engineering, 2012, 43(2): 471-476. |
12 | LEE B C, LEE K W, BYUN J H, et al. The compressive response of new composite truss cores[J]. Composites Part B: Engineering, 2012, 43(2): 317-324. |
13 | CHE L, XU G D, ZENG T, et al. Compressive and shear characteristics of an octahedral stitched sandwich composite[J]. Composite Structures, 2014, 112: 179-187. |
14 | DONG L, WADLEY H. Mechanical properties of carbon fiber composite octet-truss lattice structures[J]. Composites Science and Technology, 2015, 119: 26-33. |
15 | ZHANG P, HAN Z Y, RAN X D, et al. Path design and compression behavior of 3D printed continuous carbon fiber reinforced composite lattice sandwich structures[J]. Composite Structures, 2022, 296: 115893. |
16 | KHALEDI H, ROSTAMIYAN Y. Flexural strength of foam-filled polymer composite sandwich panel with novel M-shaped core reinforced by nano-SiO2[J]. Polymer Composites, 2021, 42(12): 6704-6718. |
17 | CHEUNG K C, GERSHENFELD N. Reversibly assembled cellular composite materials[J]. Science, 2013, 341(6151): 1219-1221. |
18 | WANG X T, WANG B, WEN Z H, et al. Fabrication and mechanical properties of CFRP composite three-dimensional double-arrow-head auxetic structures[J]. Composites Science and Technology, 2018, 164: 92-102. |
19 | LI W X, ZHENG Q, FAN H L, et al. Fabrication and mechanical testing of ultralight folded lattice-core sandwich cylinders[J]. Engineering, 2020, 6(2): 196-204. |
20 | 郝建伟, 陈亚莉. 树脂基复合材料成形工艺进展 [J]. 航空制造技术, 2008, 51(S1): 120-125. |
HAO J W, CHEN Y L. Development of resin matrix composite forming process[J]. Aeronautical Manufacturing Technology, 2008, 51(S1): 120-125 (in Chinese). | |
21 | YIN S, WU L Z, MA L, et al. Pyramidal lattice sandwich structures with hollow composite trusses[J]. Composite Structures, 2011, 93(12): 3104-3111. |
22 | YIN S, WU L Z, YANG J S, et al. Damping and low-velocity impact behavior of filled composite pyramidal lattice structures[J]. Journal of Composite Materials, 2014, 48(15): 1789-1800. |
23 | WANG B, ZHANG G Q, HE Q L, et al. Mechanical behavior of carbon fiber reinforced polymer composite sandwich panels with 2-D lattice truss cores[J]. Materials & Design, 2014, 55: 591-596. |
24 | WANG B, WU L Z, MA L, et al. Fabrication and testing of carbon fiber reinforced truss core sandwich panels[J]. Journal of Materials Science & Technology, 2009, 25(4): 547-550. |
25 | LI M, WU L Z, MA L, et al. Structural design of pyramidal truss core sandwich beams loaded in 3-point bending[J]. Journal of Mechanics of Materials and Structures, 2011, 6(9-10): 1255-1266. |
26 | XIONG J, MA L, PAN S, et al. Shear and bending performance of carbon fiber composite sandwich panels with pyramidal truss cores[J]. Acta Materialia, 2012, 60(4): 1455-1466. |
27 | HUANG W, FAN Z H, ZHANG W, et al. Impulsive response of composite sandwich structure with tetrahedral truss core[J]. Composites Science and Technology, 2019, 176: 17-28. |
28 | XIONG J, MA L, WU L Z, et al. Fabrication and crushing behavior of low density carbon fiber composite pyramidal truss structures[J]. Composite Structures, 2010, 92(11): 2695-2702. |
29 | XIONG J, MA L, WU L Z, et al. Mechanical behavior and failure of composite pyramidal truss core sandwich columns[J]. Composites Part B: Engineering, 2011, 42(4):938-945. |
30 | SUN Y G, GAO L. Mechanical behavior of all-composite pyramidal truss cores sandwich panels[J]. Mechanics of Materials, 2013, 65: 56-65. |
31 | GAO L, SUN Y G, CONG L X, et al. Mechanical behaviours of composite sandwich panel with strengthened pyramidal truss cores[J]. Composite Structures, 2013, 105: 149-152. |
32 | XU G D, YANG F, ZENG T, et al. Bending behavior of graded corrugated truss core composite sandwich beams[J]. Composite Structures, 2016, 138: 342-351. |
33 | SUN Y, GUO L C, WANG T S, et al. Bending strength and failure of single-layer and double-layer sandwich structure with graded truss core[J]. Composite Structures, 2019, 226: 111204. |
34 | GAO Y, ZHOU Z G, HU H, et al. New concept of carbon fiber reinforced composite 3D auxetic lattice structures based on stretching-dominated cells[J]. Mechanics of Materials, 2021, 152: 103661. |
35 | LI X D, WU L Z, MA L, et al. Effect of temperature on the compressive behavior of carbon fiber composite pyramidal truss cores sandwich panels with reinforced frames[J]. Theoretical and Applied Mechanics Letters, 2016, 6(2): 76-80. |
36 | WU Q Q, MA L, WU L Z, et al. A novel strengthening method for carbon fiber composite lattice truss structures[J]. Composite Structures, 2016, 153: 585-592. |
37 | DONG L, WADLEY H. Shear response of carbon fiber composite octet-truss lattice structures[J]. Composites Part A: Applied Science and Manufacturing, 2016, 81: 182-192. |
38 | WANG B, HU J Q, LI Y Q, et al. Mechanical properties and failure behavior of the sandwich structures with carbon fiber-reinforced X-type lattice truss core[J]. Composite Structures, 2018, 185: 619-633. |
39 | YIN S, CHEN H Y, WU Y B, et al. Introducing composite lattice core sandwich structure as an alternative proposal for engine hood[J]. Composite Structures, 2018, 201: 131-140. |
40 | LI W X, SUN F F, WANG P, et al. A novel carbon fiber reinforced lattice truss sandwich cylinder: fabrication and experiments[J]. Composites Part A: Applied Science and Manufacturing, 2016, 81: 313-322. |
41 | VITALE P, FRANCUCCI G, RAPP H, et al. Manufacturing and compressive response of ultra-lightweight CFRP cores[J]. Composite Structures, 2018, 194: 188-198. |
42 | MCHALE C, WEAVER P M. Morphing composite cylindrical lattices with enhanced bending stiffness[J]. Materials & Design, 2022, 222: 111056. |
43 | ZHANG S K, YU K H, DONG L. Compressive property of a hybrid hierarchical metamaterial[J]. Materials Today Communications, 2022, 33: 104260. |
44 | FAN H L, QU Z X, XIA Z C, et al. Designing and compression behaviors of ductile hierarchical pyramidal lattice composites[J]. Materials & Design, 2014, 58: 363-367. |
45 | FAN H L, SUN F F, YANG L, et al. Interlocked hierarchical lattice materials reinforced by woven textile sandwich composites[J]. Composites Science and Technology, 2013, 87: 142-148. |
46 | YIN S, WU L Z, NUTT S. Stretch-bend-hybrid hierarchical composite pyramidal lattice cores[J]. Composite Structures, 2013, 98: 153-159. |
47 | XU J, GAO X, ZHANG C, et al. Flax fiber-reinforced composite lattice cores: a low-cost and recyclable approach[J]. Materials & Design, 2017, 133: 444-454. |
48 | JENETT B, CALISCH S, CELLUCCI D, et al. Digital morphing wing: active wing shaping concept using composite lattice-based cellular structures[J]. Soft Robotics, 2017, 4(1): 33-48. |
49 | 范华林, 杨卫, 方岱宁, 等. 新型碳纤维点阵复合材料技术研究[J]. 航空材料学报, 2007, 27(1): 46-50. |
FAN H L, YANG W, FANG D N, et al. Interlacing technique for new carbon fiber lattice materials[J]. Journal of Aeronautical Materials, 2007, 27(1): 46-50 (in Chinese). | |
50 | XU G D, ZHAI J J, ZENG T, et al. Response of composite sandwich beams with graded lattice core[J]. Composite Structures, 2015, 119: 666-676. |
51 | KIM H, CHO B H, HUR H K, et al. A composite sandwich panel integrally woven with truss core[J]. Materials & Design, 2015, 65: 231-242. |
52 | LEE Y H, LEE B K, JEON I, et al. Wire-woven bulk Kagome truss cores[J]. Acta Materialia, 2007, 55(18): 6084-6094. |
53 | ZHAI G T, ZHANG J R. Scalable fiber composite lattice structures via continuous spatial weaving[J]. Composite Structures, 2021, 262: 113651. |
54 | DJAMA K, MICHEL L, GABOR A, et al. Mechanical behaviour of a sandwich panel composed of hybrid skins and novel glass fibre reinforced polymer truss core[J]. Composite Structures, 2019, 215: 35-48. |
55 | JIA J L, YAN S. Fabrication and low-velocity impact response of pyramidal lattice stitched foam sandwich composites[J]. Science and Engineering of Composite Materials, 2020, 27(1):245-257. |
56 | WANG B, LUO B L, JIANG R Y, et al. Double-layer woven lattice truss sandwich composite for multifunctional application: design, manufacture and characterization[J]. Composites Part B: Engineering, 2022, 241: 110026. |
57 | 文立伟, 肖军, 王显峰, 等. 中国复合材料自动铺放技术研究进展[J]. 南京航空航天大学学报, 2015, 47(5): 637-649. |
WEN L W, XIAO J, WANG X F, et al. Progress of automated placement technology for composites in China[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2015, 47(5): 637-649 (in Chinese). | |
58 | 王显峰, 段少华, 唐珊珊, 等. 复合材料自动铺放技术在航空航天领域的研究进展[J]. 航空制造技术, 2022, 65(16): 64-77. |
WANG X F, DUAN S H, TANG S S, et al. Progress of composite automated placement technology in aviation field[J]. Aeronautical Manufacturing Technology, 2022, 65(16): 64-77 (in Chinese). | |
59 | 宋清华, 肖军, 文立伟, 等. 热塑性复合材料自动纤维铺放装备技术[J]. 复合材料学报, 2016, 33(6): 1214-1222. |
SONG Q H, XIAO J, WEN L W, et al. Automated fiber placement system technology for thermoplastic composites[J]. Acta Materiae Compositae Sinica, 2016, 33(6): 1214-1222 (in Chinese). | |
60 | COMER A J, RAY D, OBANDE W O, et al. Mechanical characterisation of carbon fibre-PEEK manufactured by laser-assisted automated-tape-placement and autoclave[J]. Composites Part A: Applied Science and Manufacturing, 2015, 69: 10-20. |
61 | 丁希仑, 罗伟恒, 刘斐, 等. 自动铺丝成型构件缺陷在线检测技术进展[J]. 北京航空航天大学学报, 2022, 48(9): 1721-1733. |
DING X L, LUO W H, LIU F, et al. Review on automated fiber placement induced defects and their online monitoring technology[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1721-1733 (in Chinese). | |
62 | 张一鸣. GF/HDPE金字塔点阵结构铺放成型工艺研究[D]. 大连: 大连理工大学, 2020: 49-55. |
ZHANG Y M. Laying forming process of GF/HDPE pyramidal lattice structures[D]. Dalian: Dalian University of Technology, 2020: 49-55 (in Chinese). | |
63 | 张一鸣, 杨睿, 梁宜楠, 等. GF/HDPE复合材料层合板铺放工艺参数分析[J]. 塑料, 2020, 49(6): 94-97, 107. |
ZHANG Y M, YANG R, LIANG Y N, et al. Analysis of laying parameters of GF/HDPE composite laminates[J]. Plastics, 2020, 49(6): 94-97, 107 (in Chinese). | |
64 | 梁宜楠, 杨睿, 王俊龙, 等. 热塑性复合材料点阵铺放工艺对层间剪切强度的影响研究[J]. 复合材料科学与工程, 2021(10): 61-66. |
LIANG Y N, YANG R, WANG J L, et al. Effects of automated placement process of lattice structure with thermoplastic composites on the inter-laminar shear strength[J]. Composites Science and Engineering, 2021(10): 61-66 (in Chinese). | |
65 | 梁宜楠. CF/PEEK点阵结构自动铺放原位成型工艺研究[D]. 大连: 大连理工大学, 2021:49-58. |
LIANG Y N. Automated fiber placement and In-situ consolidation process of CF/PEEK lattice structure[D]. Dalian: Dalian University of Technology, 2021: :49-58 (in Chinese). | |
66 | ZENG C J, LIU L W, BIAN W F, et al. Temperature-dependent mechanical response of 4D printed composite lattice structures reinforced by continuous fiber[J]. Composite Structures, 2022, 280: 114952. |
67 | JIMBO K, TATENO T. Design optimization of infill pattern structure and continuous fiber path for CFRP-AM: simultaneous optimization of topology and fiber arrangement for minimum material cost[J]. Precision Engineering, 2022, 74: 447-459. |
68 | LUAN C C, YAO X H, ZHANG C, et al. Integrated self-monitoring and self-healing continuous carbon fiber reinforced thermoplastic structures using dual-material three-dimensional printing technology[J]. Composites Science and Technology, 2020, 188: 107986. |
69 | LUAN C C, YAO X H, ZHANG C, et al. Large-scale deformation and damage detection of 3D printed continuous carbon fiber reinforced polymer-matrix composite structures[J]. Composite Structures, 2019, 212: 552-560. |
70 | LIU S T, LI Y G, LI N Y. A novel free-hanging 3D printing method for continuous carbon fiber reinforced thermoplastic lattice truss core structures[J]. Materials & Design, 2018, 137: 235-244. |
71 | EICHENHOFER M, WONG J C H, ERMANNI P. Continuous lattice fabrication of ultra-lightweight composite structures[J]. Additive Manufacturing, 2017, 18: 48-57. |
72 | KEIDEL D, FASEL U, ERMANNI P. Concept investigation of a lightweight composite lattice morphing wing[J]. AIAA Journal, 2021, 59(6): 2242-2250. |
73 | WANG Z W, LUAN C C, LIAO G X, et al. Mechanical and self-monitoring behaviors of 3D printing smart continuous carbon fiber-thermoplastic lattice truss sandwich structure[J]. Composites Part B: Engineering, 2019, 176: 107215. |
74 | NIU B, LI S J, YANG R. Manufacturing and mechanical properties of composite orthotropic Kagome honeycomb using novel modular method[J]. Frontiers of Mechanical Engineering, 2020, 15(3): 484-495. |
75 | MEI J, LIU J Y, LIU J L. A novel fabrication method and mechanical behavior of all-composite tetrahedral truss core sandwich panel[J]. Composites Part A: Applied Science and Manufacturing, 2017, 102: 28-39. |
76 | TAO Q, WANG C G, WANG K, et al. Mixed-mode bending of a smart reconfigurable lattice structure with bi-directional corrugated core[J]. International Journal of Mechanical Sciences, 2020, 185: 105848. |
77 | UMER R, BARSOUM Z, JISHI H Z, et al. Analysis of the compression behaviour of different composite lattice designs[J]. Journal of Composite Materials, 2018, 52(6): 715-729. |
78 | GEORGE T, DESHPANDE V S, WADLEY H N G. Hybrid carbon fiber composite lattice truss structures[J]. Composites Part A: Applied Science and Manufacturing, 2014, 65: 135-147. |
79 | GEORGE T, DESHPANDE V S, SHARP K, et al. Hybrid core carbon fiber composite sandwich panels: fabrication and mechanical response[J]. Composite Structures, 2014, 108: 696-710. |
80 | 贾振元, 肖军, 湛利华, 等. 大型航空复合材料承力构件制造关键技术[J]. 中国基础科学, 2019, 21(2): 20-27. |
JIA Z Y, XIAO J, ZHAN L H, et al. Research of large aviation and loading-bearing composite components manufacturing[J]. China Basic Science, 2019, 21(2): 20-27 (in Chinese). | |
81 | XIONG J, MA L, VAZIRI A, et al. Mechanical behavior of carbon fiber composite lattice core sandwich panels fabricated by laser cutting[J]. Acta Materialia, 2012, 60(13-14): 5322-5334. |
82 | LIU X, ALIZADEH V, HANSEN C J. The compressive response of octet lattice structures with carbon fiber composite hollow struts[J]. Composite Structures, 2020, 239: 111999. |
83 | HU J Q, LIU A K, ZHU S W, et al. Novel panel-core connection process and impact behaviors of CF/PEEK thermoplastic composite sandwich structures with truss cores[J]. Composite Structures, 2020, 251: 112659. |
84 | SCHNEIDER C, VELEA M N, KAZEMAHVAZI S, et al. Compression properties of novel thermoplastic carbon fibre and poly-ethylene terephthalate fibre composite lattice structures[J]. Materials & Design (1980-2015), 2015, 65: 1110-1120. |
85 | JISHI H Z, UMER R, CANTWELL W J. The fabrication and mechanical properties of novel composite lattice structures[J]. Materials & Design, 2016, 91: 286-293. |
86 | XU B, YIN S, WANG Y, et al. Long-fiber reinforced thermoplastic composite lattice structures: fabrication and compressive properties[J]. Composites Part A: Applied Science and Manufacturing, 2017, 97: 41-50. |
87 | ZHAO Y Q, LIU M Y, ZHANG T, et al. Compressive properties of reversibly assembled lattice structures[J]. Journal of Reinforced Plastics and Composites, 2021, 40(11-12): 422-436. |
88 | 顾轶卓, 李敏, 李艳霞, 等. 飞行器结构用复合材料制造技术与工艺理论进展[J]. 航空学报, 2015, 36(8): 2773-2797. |
GU Y Z, LI M, LI Y X, et al. Progress on manufacturing technology and process theory of aircraft composite structure[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8): 2773-2797 (in Chinese). | |
89 | 任明法, 王荣国, 陈浩然. 具有金属内衬复合材料纤维缠绕容器固化过程的数值模拟[J]. 复合材料学报, 2005, 22(4): 118-124. |
REN M F, WANG R G, CHEN H R. Numerical simulation of curing process for filament wound pressure vessel with metal liner[J]. Acta Materiae Compositae Sinica, 2005, 22(4): 118-124 (in Chinese). | |
90 | 郭东明. 高性能制造[J]. 机械工程学报, 2022, 58(21): 225-242. |
GUO D M. High performance manufacturing[J]. Journal of Mechanical Engineering, 2022, 58(21): 225-242 (in Chinese). |
[1] | 陈立, 曾孝云, 黄文, 张建飞. 简谐基础加速度激励下的点阵结构优化设计[J]. 航空学报, 2024, 45(5): 529704-529704. |
[2] | 张卫红, 唐长红. 航空航天装备的轻量化:挑战与未来[J]. 航空学报, 2024, 45(5): 529965-529965. |
[3] | 张超, 曹勇, 赵振强, 张海洋, 孙建波, 王志华, 蔚夺魁. 树脂基复合材料在民用航空发动机中的应用与关键技术研究进展[J]. 航空学报, 2024, 45(2): 28556-028556. |
[4] | 唐论, 余圣甫, 郑博, 史玉升, 陈颖. 圆柱面点阵自生Al2O3铝合金粉芯丝材开发及应用[J]. 航空学报, 2023, 44(9): 626864-626864. |
[5] | 张伟, 王彬文, 樊俊铃, 詹绍正, 焦婷, 杨宇. 基于多模式超声成像的CFRP冲击损伤无损表征与冲击后压缩强度预测[J]. 航空学报, 2023, 44(1): 426635-426635. |
[6] | 姜春阳, 吴利辉, 常云龙, 薛鹏, 倪丁瑞, 肖伯律, 马宗义. 铝合金与树脂基复合材料的铆接/搅拌摩擦搭接复合焊接[J]. 航空学报, 2022, 43(2): 625190-625190. |
[7] | 顾冬冬, 张晗, 刘刚, 杨碧琦. 稀土改性高强铝微桁架激光增材制造工艺调控[J]. 航空学报, 2021, 42(10): 524868-524868. |
[8] | 程晖, 樊新田, 徐冠华, 杨语, 王岚. 航空复合材料结构精密干涉连接技术综述[J]. 航空学报, 2021, 42(10): 524876-524876. |
[9] | 崔文斌, 陈煊, 陈超, 程礼, 丁均梁, 张晖. CFRP超高周疲劳损伤演化过程[J]. 航空学报, 2020, 41(1): 223212-223212. |
[10] | 熊文磊, 苏佳智, 刘小林, 韩小勇, 戚经革, 宋天成. 热压罐工艺帽型加筋壁板长桁胶接变形问题[J]. 航空学报, 2019, 40(12): 423108-423108. |
[11] | 李吻, 李勇, 还大军, 褚奇奕, 陈浩然. Z-pin增强复合材料帽型加筋壁板接头拉伸性能[J]. 航空学报, 2016, 37(6): 2003-2012. |
[12] | 李吻, 李勇, 还大军, 褚奇奕, 肖军. Z-pin增强复合材料帽型单加筋板弯曲性能[J]. 航空学报, 2016, 37(12): 3843-3852. |
[13] | 田文平, 肖军, 李金焕, 徐挺, 刘婷. 空间光学结构用改性氰酸酯树脂及其复合材料性能[J]. 航空学报, 2016, 37(11): 3520-3527. |
[14] | 顾轶卓, 李敏, 李艳霞, 王绍凯, 张佐光. 飞行器结构用复合材料制造技术与工艺理论进展[J]. 航空学报, 2015, 36(8): 2773-2797. |
[15] | 董晓阳, 李勇, 张向阳, 肖军, 李吻. Z-pin增强树脂基复合材料单搭接连接性能[J]. 航空学报, 2014, 35(5): 1302-1310. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 713
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 962
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学