1 |
李杰, 李响, 许元铭, 等. 工业人工智能及应用研究现状及展望[J]. 自动化学报, 2020, 46(10): 2031-2044.
|
|
LEE J, LI X, XU Y M, et al. Recent advances and prospects in industrial AI and applications[J]. Acta Automatica Sinica, 2020, 46(10): 2031-2044 (in Chinese).
|
2 |
韩中, 程林, 熊金泉, 等. 大数据结构化与数据驱动的复杂系统维修决策[J]. 自动化学报, 2020, 46(2): 385-396.
|
|
HAN Z, CHENG L, XIONG J Q, et al. Complex system maintenance decisions based on big data structuration and data-driven[J]. Acta Automatica Sinica, 2020, 46(2): 385-396 (in Chinese).
|
3 |
陆宁云, 陈闯, 姜斌, 等. 复杂系统维护策略最新研究进展: 从视情维护到预测性维护[J]. 自动化学报, 2021, 47(1): 1-17.
|
|
LU N Y, CHEN C, JIANG B, et al. Latest progress on maintenance strategy of complex system: From condition-based maintenance to predictive maintenance[J]. Acta Automatica Sinica, 2021, 47(1): 1-17 (in Chinese).
|
4 |
孙长银, 吴国政, 王志衡, 等. 自动化学科面临的挑战[J]. 自动化学报, 2021, 47(2): 464-474.
|
|
SUN C Y, WU G Z, WANG Z H, et al. On challenges in automation science and technology[J]. Acta Automatica Sinica, 2021, 47(2): 464-474 (in Chinese).
|
5 |
袁烨, 张永, 丁汉. 工业人工智能的关键技术及其在预测性维护中的应用现状[J]. 自动化学报, 2020, 46(10): 2013-2030.
|
|
YUAN Y, ZHANG Y, DING H. Research on key technology of industrial artificial intelligence and its application in predictive maintenance[J]. Acta Automatica Sinica, 2020, 46(10): 2013-2030 (in Chinese).
|
6 |
SI X S, WANG W B, HU C H, et al. Remaining useful life estimation - A review on the statistical data driven approaches[J]. European Journal of Operational Research, 2011, 213(1): 1-14.
|
7 |
王秀丽, 姜斌, 陆宁云. 基于相关向量机的高速列车牵引系统剩余寿命预测[J]. 自动化学报, 2019, 45(12): 2303-2311.
|
|
WANG X L, JIANG B, LU N Y. Relevance vector machine based remaining useful life prediction for traction systems of high-speed trains[J]. Acta Automatica Sinica, 2019, 45(12): 2303-2311 (in Chinese).
|
8 |
SI X S, ZHANG Z X, HU C H. Data-driven remaining useful life prognosis techniques: stochastic models, methods and applications[M]. Berlin, Heidelberg: Springer, 2017.
|
9 |
LEI Y G, LI N P, GUO L, et al. Machinery health prognostics: A systematic review from data acquisition to RUL prediction[J]. Mechanical Systems and Signal Processing, 2018, 104: 799-834.
|
10 |
ZHANG Z X, SI X S, HU C H, et al. Degradation data analysis and remaining useful life estimation: A review on Wiener-process-based methods[J]. European Journal of Operational Research, 2018, 271(3): 775-796.
|
11 |
HALL D L, LLINAS J. An introduction to multisensor data fusion[J]. Proceedings of the IEEE, 1997, 85(1): 6-23.
|
12 |
TIAN Z G. An artificial neural network method for remaining useful life prediction of equipment subject to condition monitoring[J]. Journal of Intelligent Manufacturing, 2012, 23(2): 227-237.
|
13 |
GAO Y Y, WEN Y X, WU J G. A neural network-based joint prognostic model for data fusion and remaining useful life prediction[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(1): 117-127.
|
14 |
AL-DULAIMI A, ZABIHI S, ASIF A, et al. A multimodal and hybrid deep neural network model for Remaining Useful Life estimation[J]. Computers in Industry, 2019, 108: 186-196.
|
15 |
LISTOU ELLEFSEN A, BJØRLYKHAUG E, ÆSØY V, et al. Remaining useful life predictions for turbofan engine degradation using semi-supervised deep architecture[J]. Reliability Engineering & System Safety, 2019, 183: 240-251.
|
16 |
MIAO H H, LI B, SUN C, et al. Joint learning of degradation assessment and RUL prediction for aeroengines via dual-task deep LSTM networks[J]. IEEE Transactions on Industrial Informatics, 2019, 15(9): 5023-5032.
|
17 |
VAN ASSELT M B A, MESMAN J, VAN‘T KLOOSTER S A. Dealing with prognostic uncertainty[J]. Futures, 2007, 39(6): 669-684.
|
18 |
LI G Y, YANG L, LEE C G, et al. A Bayesian deep learning RUL framework integrating epistemic and aleatoric uncertainties[J]. IEEE Transactions on Industrial Electronics, 2021, 68(9): 8829-8841.
|
19 |
LIU K B, GEBRAEEL N Z, SHI J J. A data-level fusion model for developing composite health indices for degradation modeling and prognostic analysis[J]. IEEE Transactions on Automation Science and Engineering, 2013, 10(3): 652-664.
|
20 |
KIM M, SONG C Y, LIU K B. A generic health index approach for multisensor degradation modeling and sensor selection[J]. IEEE Transactions on Automation Science and Engineering, 2019, 16(3): 1426-1437.
|
21 |
CHEHADE A, SONG C Y, LIU K B, et al. A data-level fusion approach for degradation modeling and prognostic analysis under multiple failure modes[J]. Journal of Quality Technology, 2018, 50(2): 150-165.
|
22 |
LI Z, WU J G, YUE X W. A shape-constrained neural data fusion network for health index construction and residual life prediction[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(11): 5022-5033.
|
23 |
彭开香, 皮彦婷, 焦瑞华, 等. 航空发动机的健康指标构建与剩余寿命预测[J]. 控制理论与应用, 2020, 37(4): 713-720.
|
|
PENG K X, PI Y T, JIAO R H, et al. Health indicator construction and remaining useful life prediction for aircraft engine[J]. Control Theory & Applications, 2020, 37(4): 713-720 (in Chinese).
|
24 |
PENG K X, JIAO R H, DONG J, et al. A deep belief network based health indicator construction and remaining useful life prediction using improved particle filter[J]. Neurocomputing, 2019, 361: 19-28.
|
25 |
LIU K B, HUANG S. Integration of data fusion methodology and degradation modeling process to improve prognostics[J]. IEEE Transactions on Automation Science and Engineering, 2016, 13(1): 344-354.
|
26 |
LIU K B, CHEHADE A, SONG C Y. Optimize the signal quality of the composite health Index via data fusion for degradation modeling and prognostic analysis[J]. IEEE Transactions on Automation Science and Engineering, 2017, 14(3): 1504-1514.
|
27 |
YAN H, LIU K B, ZHANG X, et al. Multiple sensor data fusion for degradation modeling and prognostics under multiple operational conditions[J]. IEEE Transactions on Reliability, 2016, 65(3): 1416-1426.
|
28 |
SONG C Y, LIU K B. Statistical degradation modeling and prognostics of multiple sensor signals via data fusion: A composite health index approach[J]. IISE Transactions, 2018, 50(10): 853-867.
|
29 |
任子强, 司小胜, 胡昌华, 等. 融合多传感器数据的发动机剩余寿命预测方法[J]. 航空学报, 2019, 40(12): 223312.
|
|
REN Z Q, SI X S, HU C H, et al. Remaining useful life prediction method for engine combining multi-sensors data[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(12): 223312 (in Chinese).
|
30 |
李天梅, 司小胜, 刘翔, 等. 大数据下数模联动的随机退化设备剩余寿命预测技术[J]. 自动化学报, 2022, 48(9): 2119-2141.
|
|
LI T M, SI X S, LIU X, et al. Data-model interactive remaining useful life prediction technologies for stochastic degrading devices with big data[J]. Acta Automatica Sinica, 2022, 48(9): 2119-2141 (in Chinese).
|
31 |
SI X S, WANG W B, CHEN M Y, et al. A degradation path-dependent approach for remaining useful life estimation with an exact and closed-form solution[J]. European Journal of Operational Research, 2013, 226(1): 53-66.
|
32 |
SI X S, WANG W B, HU C H, et al. Estimating remaining useful life with three-source variability in degradation modeling[J]. IEEE Transactions on Reliability, 2014, 63(1): 167-190.
|
33 |
Saxena A, Goebel K, Simon D, Eklund N. Damage propagation modeling for aircraft engine run-to-failure simulation[C]∥2008 International Conference on Prognostics and Health Management. Piscataway: IEEE Press, 2008: 10423504.
|
34 |
WANG C S, LU N Y, CHENG Y H, et al. A data-driven aero-engine degradation prognostic strategy[J]. IEEE Transactions on Cybernetics, 2021, 51(3): 1531-1541.
|
35 |
CONOVER W J. Practical nonparametric statistics[M]. 3rd ed. New York: Wiley, 1999.
|
36 |
YU W N, KIM I Y, MECHEFSKE C. Analysis of different RNN autoencoder variants for time series classification and machine prognostics[J]. Mechanical Systems and Signal Processing, 2021, 149: 107322.
|
37 |
PILLAI S, VADAKKEPAT P. Two stage deep learning for prognostics using multi-loss encoder and convolutional composite features[J]. Expert Systems With Applications, 2021, 171: 114569.
|