1 |
朱自强, 兰世隆. 超声速民机和降低音爆研究[J]. 航空学报, 2015, 36(8): 2507-2528.
|
|
ZHU Z Q, LAN S L. Study of supersonic commercial transport and reduction of sonic boom[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8): 2507-2528 (in Chinese).
|
2 |
WOLZ R. A summary of recent supersonic vehicle studies at gulfstream aerospace[C]∥41st Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2003.
|
3 |
袁新立, 王元元. 速度与环保的平衡: NASA超声速低声爆验证机项目进展与分析[J]. 环球飞行, 2016(6): 48-53.
|
|
YUAN X L, WANG Y Y. Balance with speed and environmental protection-progress and analysis of-NASA supersonic and low sonic boom demonstrator project[J]. World Flight, 2016(6): 48-53 (in Chinese).
|
4 |
PLOTKIN K J. State of the art of sonic boom modeling[J]. The Journal of the Acoustical Society of America, 2002, 111(1 Pt 2): 530-536.
|
5 |
PAWLOWSKI J, GRAHAM D, BOCCADORO C, et al. Origins and overview of the shaped sonic boom demonstration program[C]∥43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2005.
|
6 |
SONG W B, KEANE A J. Surrogate-based aerodynamic shape optimization of a civil aircraft engine nacelle[J]. AIAA Journal, 2007, 45(10): 2565-2574.
|
7 |
KOZIEL S, LEIFSSON L. Surrogate-based aerodynamic shape optimization by variable-resolution models[J]. AIAA Journal, 2012, 51(1): 94-106.
|
8 |
ONG Y S, NAIR P B, KEANE A J. Evolutionary optimization of computationally expensive problems via surrogate modeling[J]. AIAA Journal, 2003, 41(4): 687-696.
|
9 |
YAMAMOTO K, INOUE O. Applications of genetic algorithm to aerodynamic shape optimization[C]∥12th Computational Fluid Dynamics Conference, 1995: 1650.
|
10 |
MATSUSHIMA K, TAKANASHI S, IWAMIYA T. Inverse design method for transonic multiple wing systems using integral equations[J]. Journal of Aircraft, 1997, 34(3): 322-329.
|
11 |
HIROSE N, TAKANASHI S, KAWAI N. Transonic airfoil design procedure utilizing a Navier-Stokes analysis code[J]. AIAA Journal, 1987, 25(3): 353-359.
|
12 |
OBAYASHI S, TAKANASHI S. Genetic optimization of target pressure distributions for inverse design methods[J]. AIAA Journal, 1996, 34(5): 881-886.
|
13 |
TAKANASHI S. Iterative three-dimensional transonic wing design using integral equations[J]. Journal of Aircraft, 1985, 22(8): 655-660.
|
14 |
RALLABHANDI S. Sonic boom adjoint methodology and its applications[C]∥29th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2011.
|
15 |
RALLABHANDI S K, NIELSEN E J, DISKIN B. Sonic-boom mitigation through aircraft design and adjoint methodology[J]. Journal of Aircraft, 2014, 51(2): 502-510.
|
16 |
AFTOSMIS M, NEMEC M, CLIFF S. Adjoint-based low-boom design with Cart3D (Invited)[C]∥29th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2011.
|
17 |
NADARAJAH S, JAMESON A, ALONSO J. Sonic boom reduction using an adjoint method for wing-body configurations in supersonic flow[C]∥9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. Reston: AIAA, 2002.
|
18 |
THOMAS C L. Extrapolation of sonic boom pressure signatures by the waveform parameter method: NASA TND-6832[R]. Washington, D.C. : NASA, 1972.
|
19 |
ANDERSON M D. The propagation of spherical N wave in an absorbing medium and its diffraction by a circular aperture[D]. Austin: University of Texas at Austin,1974.
|
20 |
RALLABHANDI S K. Advanced sonic boom prediction using the augmented Burgers equation[J]. Journal of Aircraft, 2011, 48(4): 1245-1253.
|
21 |
CLEVELAND R O. Propagation of sonic booms though a real, stratified atmosphere[D]. Austin: The University of Texas at Austin, 1995.
|
22 |
张绎典, 黄江涛, 高正红. 基于增广Burgers方程的音爆远场计算及应用[J]. 航空学报, 2018, 39(7): 122039.
|
|
ZHANG Y D, HUANG J T, GAO Z H. Far field simulation and applications of sonic boom based on augmented Burgers equation[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(7): 122039 (in Chinese).
|
23 |
SEEBASS R, GEORGE A R. Sonic‐boom minimization[J]. Journal of the Acoustical Society of America, 1972, 51(49): 72.
|
24 |
LI W, RALLABHANDI S. Inverse design of low-boom supersonic concepts using reversed equivalent-area targets[J]. Journal of Aircraft, 2014, 51(1): 29-36.
|
25 |
RALLABHANDI S K. Application of adjoint methodology to supersonic aircraft design using reversed equivalent areas[J]. Journal of Aircraft, 2014, 51(6): 1873-1882.
|
26 |
ZHANG Y D, HUANG J T, GAO Z H, et al. Inverse design of low boom configurations using proper orthogonal decomposition and augmented Burgers equation[J]. Chinese Journal of Aeronautics, 2019, 32(6): 1380-1389.
|
27 |
PIERCE A D. Acoustics: An introduction to its physical principles and applications[M]. New York: McGraw-Hill Book Co., 1981: 56-57.
|
28 |
CLEVELAND R O. Propagation of sonic booms through a real, stratified atmosphere[D]. Austin: University of Texas at Austin, 1995.
|
29 |
PLOTKIN K. Review of sonic boom theory[C]∥12th Aeroacoustic Conference. Reston: AIAA, 1989.
|
30 |
RALLABHANDI S K, LOUBEAU A. Summary of propagation cases of the second AIAA sonic boom prediction workshop[J]. Journal of Aircraft, 2018, 56(3): 876-895.
|
31 |
杨训仁, 陈宇. 大气声学[M]. 2版. 北京: 科学出版社, 2007.
|
|
YANG X R, CHEN Y. Atmospheric acoustics[M]. 2nd ed. Beijing: Science Press, 2007 (in Chinese).
|
32 |
PARK M A, CARTER M B. Nearfield summary and analysis of the third AIAA sonic boom prediction workshop C608 low boom demonstrator[C]∥AIAA Scitech 2021 Forum. Reston: AIAA, 2021.
|
33 |
PLOTKIN K, SIZOV N, MORGENSTERN J. Examination of sonic boom minimization experienced indoors[C]∥46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008.
|
34 |
PLOTKIN K. Review of sonic boom theory[C]∥12th Aeroacoustic Conference. Reston: AIAA, 1989.
|