[1] 朱自强, 兰世隆. 超声速民机和降低音爆研究[J]. 航空学报, 2015, 36(8):2507-2528. ZHU Z Q, LAN S L. Study of supersonic commercial transport and reduction of sonic boom[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8):2507-2528(in Chinese). [2] PLOTKIN K J. State of the art of sonic boom modeling[J]. Journal of the Acoustical Society of America, 2002, 111(2):530-536. [3] PLOTKIN K J. Sonic boom research:History and future (Invited):AIAA-2003-3575[R].Reston, VA:AIAA, 2003. [4] 冯晓强. 超声速客机低声爆机理及设计方法研究[D].西安:西北工业大学, 2014:15. FENG X Q. The research of low sonic boom mechanism and design method of supersonic aircraft[D]. Xi'an:Northwestern Polytechnical University, 2014:15(in Chinese). [5] CARLSON H W. Simplified sonic-boom prediction:NASA TR-1978-1122[R]. Washington, D.C.:NASA, 1978. [6] PLOTKIN K. Review of sonic boom theory:AIAA-2003-3575[R]. Reston, VA:AIAA, 1989. [7] RALLABHANDI S. Advanced sonic boom prediction using augmented burger's equation[J]. Journal of Aircraft, 2011, 48(4):1245-1253. [8] YAMASHITA R, SUZUKI K. Full-field sonic boom simulation in stratified atmosphere[J]. AIAA Journal, 2016, 54(10):1-9. [9] THOMAS C L. Extrapolation of sonic boom pressure signatures by the waveform parameter method:NASA TN D-6832[R]. Washington, D.C.:NASA, 1972. [10] ANDERSON M D. The propagation of a spherical N wave in an absorbing medium and its diffraction by a circular aperture[R]. Austin:University of Texas at Austin, 1974. [11] CLEVELAND R O. Propagation of sonic booms through a real, stratified atmosphere[D]. Austin:The University of Texas at Austin, 1995. [12] 王刚, 马博平, 雷知锦, 等. 典型标模声爆的数值预测与分析[J]. 航空学报, 2018, 39(1):121458. WANG G, MA B P, LEI Z J, et al. Simulation and analysis for sonic boom prediction on several typical calculation models[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1):121458. [13] FENG X, LI Z, SONG B. Research of low boom and low drag supersonic aircraft design[J]. Chinese Journal of Aeronautics, 2014, 27(3):531-541. [14] 冯晓强, 宋笔锋, 李占科, 等. 超声速飞机低声爆布局混合优化方法研究[J]. 航空学报, 2013, 34(8):1768-1777. FENG X Q, SONG B F, LI Z K, et al. Hybrid optimization approach reaseach for low sonic boom supersonic aircraft configuration[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(8):1768-1777(in Chinese). [15] RALLABHANDI S, LOUBEAU A. Summary of propagation cases of the second AIAA sonic boom prediction workshop:AIAA-2017-3257[R]. Reston,VA:AIAA, 2017. [16] BLACKSTOCK D T. Thermoviscous attenuation of plane, periodic, finite amplitude sound waves[J]. Journal of the Acoustical Society of America, 1964, 36(3):534. [17] CARLTON T W, BLACKSTOCK D T. Propagation of plane sound waves of finite amplitude in inhomogeneous fluids[J]. Journal of the Acoustical Society of America, 1974, 56(6):S42. [18] PIERCE A D. Acoustics:An introduction to its physical principles and applications[M]. Columbus, OH:Mc-Graw-Hill Book Co., 1981:56-57. [19] HAMILTON M F, BLACKSTOCK D T. Nonlinear acoustics[M]. New York:Academic Press, 1998:55. [20] PLOTKIN K, MAGLIERI D. Sonic boom research:History and future (Invited):AIAA-2003-3575[R]. Reston, VA:AIAA, 2003. [21] PARK M A, MORGENSTERN J M. Summary and statistical analysis of the first AIAA sonic boom prediction workshop[J]. Journal of Aircraft, 2016, 53(2):578-598. [22] PARK M A, NEMEC M. Near field summary and statistical ananalysis of the second AIAA sonic boom prediction workshop:AIAA-2017-3256[R]. Reston, VA:AIAA, 2017. [23] RALLABHANDI S K. Application of adjoint methodology in various aspects of sonic boom design:AIAA-2014-2271[R]. Reston,VA:AIAA, 2014. [24] 杨训仁, 陈宇. 大气声学[M]. 北京:科学出版社, 2007. YANG X R, CHEN Y. Atmosphericacoustics[M]. Beijing:Science Press, 2007(in Chinese). [25] BAUER H J. Influences of transport mechanisms on sound propagation in gases[J]. Advances in Molecular Relaxation Processes, 1972, 2(2-4):319-376. [26] EVANS L B, SUTHERLAND L C. Absorption of sound in air[J]. Journal of the Acoustical Society of America, 1971, 49(1):110. [27] MARTINS J R, LAMBE A B. Multidisciplinary design optimization:A survey of architectures[J]. AIAA Journal, 2013, 51(9):2049-2075. [28] HUAN Z, ZHENGHONG G, FANG X, et al. Review of robust aerodynamic design optimization for air vehicles[J/OL]. Archives of Computational Methods in Engineering, (2018-02-19)[2018-03-19]. https://doi.org/10.1007/s11831-018-9259-2. [29] ZHAO H, GAO Z, GAO Y, et al. Effective robust design of high lift NLF airfoil under multi-parameter uncertainty[J]. Aerospace Science and Technology, 2017, 68:530-542. [30] LEE Y S, HAMILTON M F. Time-domain modeling of pulsed finite-amplitude sound beams[J]. Journal of the Acoustical Society of America, 1995, 97(2):906-917. [31] ATKINSON K E. An introduction to numerical analysis[M]. Hoboken, New Jersey:Wiley, 1978. [32] BLOKHINTZEV D. The propagation of sound in an inhomogeneous and moving medium I[J]. Journal of the Acoustical Society of America, 1946, 18(2):322-328. [33] ONYEONWU R O. The effects of wind and temperature gradients on sonic boom corridors:UTIAS No.168[R]. Toronto:University of Toronto, 1971. [34] YAMAMOTO M, HASHIMOTO A, AOYAMA T, et al. A unified approach to an augmented Burgers equation for the propagation of sonic booms[J]. Journal of the Acoustical Society of America, 2015, 137(4):1857. |