[1] WANG X, HU C H, REN Z Q, et al. Performance degradation modeling and remaining useful life prediction for aero-engine based on nonline Wiener process[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(2): 223291(in Chinese). 王玺, 胡昌华, 任子强, 等. 基于非线性Wiener过程的航空发动机性能衰减建模与剩余寿命预测[J]. 航空学报, 2020, 41(2): 223291. [2] ZHENG J T, DENG S E, ZHANG W H, et al. Atypical failure mechanism of aero-engine main shaft roller bearing[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5): 423347(in Chinese). 郑金涛, 邓四二, 张文虎, 等. 航空发动机主轴滚子轴承非典型失效机理[J]. 航空学报, 2020, 41(5): 423347. [3] MIAO X W. A comprehensive prognostics approach for prediction aero-engine bearing life[D]. Beijing: Beihang University, 2008: 1-3(in Chinese). 苗学问. 航空发动机主轴承使用寿命预测技术研究[D]. 北京: 北京航空航天大学, 2008: 1-3. [4] WANG H W, CHEN G, CHEN L B, et al. A fault monitoring technique for wear of aero-engine rolling bearing[J]. Journal of Aerospace Power, 2014, 9(29): 2256-2263(in Chinese). 王洪伟, 陈果, 陈立波, 等. 一种航空发动机滚动轴承磨损故障监测技术[J]. 航空动力学报, 2014, 9(29): 2256-2263. [5] WEI X K, YANG L, LIU F, et al. Aeroengine prognostics and health management[M]. Beijing: National Defense Industry Press, 2014: 27-31(in Chinese). 尉询楷, 杨立, 刘芳, 等. 航空发动机预测与健康管理[M]. 北京: 国防工业出版社, 2014: 27-31. [6] DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. [7] AMIN V S, ZHANG Y D, HIMED B. Sparsity-based time-frequency representation of FM signals with burst missing samples[J]. Signal Processing, 2019, 155: 25-43. [8] KONG Y, WANG T Y, FENG Z P, et al. Discriminative dictionary learning based sparse representation classification for intelligent fault identification of planet bearings in wind turbine[J]. Renewable Energy, 2020, 152: 754-769. [9] YANG B, YANG Z, SUN R. Fast nonlinear chirplet dictionary-based sparse decomposition for rotating machinery fault diagnosis under nonstationary conditions[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 68(12): 4736-4745. [10] ZHANG H, DU Z H, FANG Z W, et al. Sparse decomposition based aero-engine's bearing fault diagnosis[J]. Journal of Mechanical Engineering, 2015, 51(1): 97-105(in Chinese). 张晗, 杜朝晖, 方作为, 等. 基于稀疏分解理论的航空发动机轴承故障诊断[J]. 机械工程学报, 2015, 51(1): 97-105. [11] WU R, HUANG W, CHEN D. The exact support recovery of sparse signals with noise via orthogonal matching pursuit[J]. IEEE Signal Processing Letters, 2013, 20(4): 403-406. [12] SCHNITER P, POTTER L C, ZINIEL J. Fast bayesian matching pursuit[C]//2008 Information Theory and Applications Workshop. Piscataway: IEEE Press, 2008: 326-333. [13] MALLAT S G, ZHANG Z. Matching pursuits with time-frequency dictionaries[J]. IEEE Transactions on Signal Processing, 1993, 41(12): 3397-3415. [14] HERZET C, DRÉMEAU A. Bayesian pursuit algorithms[C]//201018th European Signal Processing Conference. Piscataway, NJ: IEEE Press, 2010: 1474-1478. [15] DEB K, PRATAP A, AGARWAL S. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197. [16] KENNEDY J, EBERHART R. Particle swarm optimization[C]//Proceedings of ICNN'95-International Conference on Neural Networks. Piscataway: IEEE Press, 1995: 1942-1948. [17] MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61. [18] FEI X Q, MENG Q F, HE Z J. Signal decomposition with matching pursuits and technology of extracting machinery fault feature based on impulse time-frequency atom[J]. Jounal of Vibration and Shock, 2003, 22(2): 28-31(in Chinese). 费晓琪, 孟庆丰, 何正嘉. 基于冲击时频原子的匹配追踪信号分解及机械故障特征提取技术[J]. 振动与冲击, 2003, 22(2): 28-31. [19] QIAO B D, CHEN G, GE K Y, et al. A new knowledge acquisition method for fault diagnosis of rolling bearings[J]. Bearing, 2011(2): 39-44(in Chinese). 乔保栋, 陈果, 葛科宇, 等. 一种滚动轴承故障知识获取的新方法[J]. 轴承, 2011(2): 39-44. [20] CHEN G. Nanjing University of aeronautics and astronautics intelligent diagnosis and expert system Lab[EB/OL]. (2020-11-30)[2020-12-04]. http://ides.nuaa.edu.cn. 陈果. 南京航空航天大学智能诊断与专家系统室[EB/OL]. (2020-11-30)[2020-12-04]. http://ides.nuaa.edu.cn. [21] ANTON J. The spectral kurtosis: A useful tool for characterising non-stationary signals[J]. Mechanical Systems and Signal Processing, 2006, 20(2): 282-307. |