航空学报 > 2022, Vol. 43 Issue (8): 625485-625485   doi: 10.7527/S1000-6893.2021.25485

故障诊断技术在航空航天领域中的应用专栏

基于多尺度量子熵的中介轴承故障诊断方法

田晶, 张羽薇, 张凤玲, 艾辛平, 高崇   

  1. 沈阳航空航天大学 辽宁省航空推进系统先进测试技术重点实验室, 沈阳 110136
  • 收稿日期:2021-03-12 修回日期:2021-07-12 出版日期:2022-08-15 发布日期:2021-07-09
  • 通讯作者: 田晶,E-mail:tianjing@188.com E-mail:tianjing@188.com
  • 基金资助:
    国家自然科学基金(12172231);辽宁省自然科学基金(2020-BS-174);辽宁省教育厅项目(JYT2020019)

Inter-shaft bearing fault diagnosis method based on multi-scale quantum entropy

TIAN Jing, ZHANG Yuwei, ZHANG Fengling, AI Xinping, GAO Chong   

  1. Liaoning Key Laboratory of Advanced Measurement and Test Technology for Aircraft Propulsion System, Shenyang Aerospace University, Shenyang 110136, China
  • Received:2021-03-12 Revised:2021-07-12 Online:2022-08-15 Published:2021-07-09
  • Supported by:
    National Natural Science Foundation of China (12172231);National Natural Science Foundation Liaoning Province (2020-BS-174);Project of Department of Education of Liaoning Province (JYT2020019)

摘要: 针对中介轴承故障信号传递路径复杂,故障信号特征微弱诊断困难的问题,提出一种基于多尺度量子熵(MQE)、局部线性嵌入算法(LLE)与概率神经网络(PNN)的故障诊断方法。该方法采用空域相关降噪对振动信号进行滤波降噪,提高信号的信噪比;利用MQE提取中介轴承故障特征信息;采用LLE方法对高维特征进行降维处理;将低维故障特征输入PNN中进行故障识别。搭建了中介轴承故障模拟试验台,模拟中介轴承正常、内圈故障、外圈故障和滚动体故障,并采集数据对本文建立的中介轴承故障诊断算法进行验证。试验结果表明:提出的中介轴承故障诊断方法能够有效识别中介轴承故障类型,且没有出现过拟合现象,并表现出良好的泛化能力。

关键词: 中介轴承, 空域相关, 多尺度量子熵, 局部线性嵌入, 故障诊断

Abstract: Targeting at the problem of complex transmission path of inter-shaft bearing fault signal, weak fault signal characteristics and difficulty in fault feature extraction, a fault diagnosis method based on Multi-scale Quantum Entropy (MQE), Locally Linear Embedding (LLE) algorithm and Probabilistic Neural Network (PNN) is proposed in this paper. Firstly,the inter-shaft bearing fault signals are denoised through the spatial correlation noise reduction method to improve the signal to noise ratio. Secondly, MQE is utilized to extract the features of inter-shaft bearings. Then, LLE is utilized to reduce and fuse high-dimensional fault features of multi-sensor to construct fault samples. Finally, the low-dimensional fault features are input into PNN multi-fault classifier for fault identification. The fault simulation test bench of the inter-shaft bearing is built to simulate the normal bearing, inner ring fault, outer ring fault and rolling element fault, and the data were collected to verify the MQE-LLE-PNN inter-shaft bearing fault diagnosis algorithm established in this paper. The experimental results validate that the proposed method can effectively identify the inter-shaft bearing fault, and shows good generalization ability without any over-fitting phenomenon.

Key words: inter-shaft bearing, spatial correlation, multi-scale quantum entropy, locally linear embedding, fault diagnosis

中图分类号: