[1] 罗发,周万城,焦桓.高温吸波材料研究现状[J]. 2002, 1(1):8-11. LUO F, ZHOU W C, JIAO H. Current study of high temperature radar absorbing materials[J]. Aerospace Materials&Technology, 2002, 1(1):8-11(in Chinese). [2] 姚琪,张振林,宫剑.耐高温/隐身/透波一体化天线罩材料的研究进展[J].当代化工研究, 2018, 1(12):6-7. YAO Q, ZHANG Z L, GONG J. Research progress of high temperature resistant/stealth/wave transmitting integrated radome materials[J]. Modern Chemical Research, 2018, 1(12):6-7(in Chinese). [3] 李萍,陈绍杰,朱珊.隐身复合材料的研究和发展[J].飞机设计, 1994, 1(1):31-36. LI P, CHEN S J, ZHU S. Research and development of stealth composites[J]. Aircraft Design, 1994, 1(1):31-36(in Chinese). [4] 郭霄,杨青真,文振华,等.吸波材料脱落对球面收敛喷管电磁散射特性的影响[J].航空学报, 2020,42(6):224466. GUO X, YANG Q Z, WEN Z H, et al. Research on the influence of RAM abscission on the electromagnetic scattering characteristic of cavity[J]. Acta Aeronautica et Astronautica Sinica, 2020,42(6):224466(in Chinese). [5] 丁冬海,罗发,周万城.高温雷达吸波材料研究现状与展望[J].无机材料学报, 2014, 29(5):461-469. DING D H, LUO F, ZHOU W C. Research status and outlook of high temperature radar absorbing materials[J]. Journal of Inorganic Materials, 2014, 29(5):461-469(in Chinese). [6] LIU Y, HE D, DUBRUNFAUT O, et al. GO-CNTs hybrids reinforced epoxy composites with porous structure as microwave absorbers[J]. Composites Science and Technology, 2020, 200(12):108450. [7] KONG L, YIN X W, YUAN X Y, et al. Electromagnetic wave absorption properties of graphene modified with carbon nanotube/poly (dimethyl siloxane) composites[J]. Carbon, 2014, 73(7):185-193. [8] YUAN H, XIONG Y L, SHEN Q, et al. Synthesis and electromagnetic absorbing performances of CNTs/PMMA laminated nanocomposite foams in X-band[J]. Composites Part A:Applied Science and Manufacturing, 2018, 107(4):334-341. [9] GUO C, ITOH K, SUN D, et al. Carbon nanotube/polysiloxane foams with tunable absorption bands for electromagnetic wave shielding[J]. ACS Applied Nano Materials, 2020, 3(6):5944-5954. [10] GOUZMAN I, GROSSMAN E, VERKER R, et al. Advances in polyimide-based materials for space applications[J]. Advanced Materials, 2019, 31(18):e1807738. [11] WILLIAMS J C, NGUYEN B N, MCCORKLE L, et al. Highly porous, rigid-rod polyamide aerogels with superior mechanical properties and unusually high thermal conductivity[J]. ACS Applied Materials&Interfaces, 2017, 9(2):1801-1809. [12] LI Y, PEI X, SHEN B, et al. Polyimide/graphene composite foam sheets with ultrahigh thermostability for electromagnetic interference shielding[J]. RSC Advance, 2015, 5(31):24342-24351. [13] GU W H, WANG G H, ZHOU M, et al. Polyimide-based foams:fabrication and multifunctional applications[J]. ACS Applied Materials&Interfaces, 2020, 12(43):48246-48258. [14] LIU J, ZHANG H B, XIE X, et al. Multifunctional, superelastic, and lightweight MXene/polyimide aerogels[J]. Small, 2018, 14(45):1802479. [15] DAI Y, WU X, LIU Z, et al. Highly sensitive, robust and anisotropic MXene aerogels for efficient broadband microwave absorption[J]. Composites Part B:Engineering, 2020, 200(11):108263. [16] PU L, LI S, ZHANG Y, et al. Polyimide-based graphene composite foams with hierarchical impedance gradient for efficient electromagnetic absorption[J]. Journal of Materials Chemistry C, 2021, 200(6):108263. [17] YIN L, CHEN T, LIU S, et al. Preparation and microwave-absorbing property of BaFe12O19 nanoparticles and BaFe12O19/Fe3C/CNTs composites[J]. RSC Advance, 2015, 5(111):91665-91669. [18] ENDO M, TAKEUCHI K, HIRAOKA T, et al. Stacking nature of graphene layers in carbon nanotubes and nanofibres[J]. Journal of Physics&Chemistry of Solids, 1997, 58(11):1707-1712. [19] LUONG N D, HIPPI U, KORHONEN J T, et al. Enhanced mechanical and electrical properties of polyimide film by graphene sheets via in situ polymerization[J]. Polymer, 2011, 52(23):5237-5242. [20] ZHAO H, CHENG Y, LV H, et al. A novel hierarchically porous magnetic carbon derived from biomass for strong lightweight microwave absorption[J]. Carbon, 2019, 142(2):245-253. [21] CHEN Y, ZHANG H B, YANG Y B, et al. High-performance epoxy nanocomposites reinforced with three-dimensional carbon nanotube sponge for electromagnetic interference shielding[J]. Advanced Functional Material, 2016, 26(3):447-455. [22] 郑天亮,张璋,王轩,等.聚苯胺中空球的改性与电磁特性[J].航空学报, 2007, 28(6):1532-1536. ZHENG T L, ZHANG Z, WANG X, et al. Modifing of PANI hollow microspheres and electromagnetic property[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(6):1532-1536(in Chinese). [23] LV H, LIANG X, CHENG Y, et al. Coin-like alpha-Fe2O3@CoFe2O4 core-shell composites with excellent electromagnetic absorption performance[J]. ACS Applied Materials&Interfaces, 2015, 7(8):4744-4750. [24] XU J J, LIU J W, CHE R C, et al. Polarization enhancement of microwave absorption by increasing aspect ratio of ellipsoidal nanorattles with Fe3O4 cores and hierarchical CuSiO3 shells[J]. Nanoscale, 2014, 6(11):5782-5790. [25] WANG Y Y, SUN W J, LIN H, et al. Steric stabilizer-based promotion of uniform polyaniline shell for enhanced electromagnetic wave absorption of carbon nanotube/polyaniline hybrids[J]. Composite Part B:Engineering, 2020, 199(10):108309. [26] 李国显,王涛,薛海荣,等.石墨烯/Fe3O4复合材料的制备及电磁波吸收性能[J].航空学报, 2011, 32(9):1732-1739. LI G X, WANG T, XUE H R, et al. Synthesis of graphene/Fe3O4 composite materials and their electromagnetic wave absorption properties outlook of high temperature radar absorbing materials[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(9):1732-1739(in Chinese). [27] ZHANG X J, ZHU J Q, YIN P G, et al. Tunable high-performance microwave absorption of Co1-xS hollow spheres constructed by nanosheets within ultralow filler loading[J]. Advanced Functional Material, 2018, 28(49):1800761. [28] HAN M, YIN X, KONG L, et al. Graphene-wrapped ZnO hollow spheres with enhanced electromagnetic wave absorption properties[J]. Journal of Materials Chemistry A, 2014, 2(39):16403-16409. [29] LV H L, ZHANG H Q, ZHAO J, et al. Achieving excellent bandwidth absorption by a mirror growth process of magnetic porous polyhedron structures[J]. Nano Research, 2016, 9(6):1813-1822. [30] KONG L, WANG C, YIN X W, et al. Electromagnetic wave absorption properties of a carbon nanotube modified by a tetrapyridinoporphyrazine interface layer[J]. Journal of Materials Chemistry C, 2017, 5(30):7479-7488. [31] XU H L, YIN X W, FAN X M, et al. Constructing a tunable heterogeneous interface in bimetallic metal-organic frameworks derived porous carbon for excellent microwave absorption performance[J]. Carbon, 2019, 148(8):421-429. |