航空学报 > 2022, Vol. 43 Issue (12): 26102-026102   doi: 10.7527/S1000-6893.2021.26102

空天电传输用聚酰亚胺改性与优化研究进展

王健1,2, 肖若凡2, 刘人郢2, 平安2, 刘继奎3, 李庆民1,2   

  1. 1. 华北电力大学 新能源电力系统国家重点实验室, 北京 102206;
    2. 华北电力大学 电气与电子工程学院, 北京 102206;
    3. 北京控制工程研究所, 北京 100089
  • 收稿日期:2021-07-13 修回日期:2021-08-04 发布日期:2021-11-23
  • 通讯作者: 王健,E-mail:wangjian31791@ncepu.edu.cn E-mail:wangjian31791@ncepu.edu.cn
  • 基金资助:
    国家自然科学基金海外及港澳学者合作研究基金(51929701)

Research progress in modification and optimization of polyimide for space electricity transmission

WANG Jian1,2, XIAO Ruofan2, LIU Renying2, PING An2, LIU Jikui3, LI Qingmin1,2   

  1. 1. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China;
    2. School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China;
    3. Beijing Institute of Control Engineering, Beijing 100089, China
  • Received:2021-07-13 Revised:2021-08-04 Published:2021-11-23
  • Supported by:
    National Natural Science Foundation of China (51929701)

摘要: 聚酰亚胺具有优良的耐高温度梯度、高绝缘及耐辐射特性,在航天器电传输器件及设备中应用广泛。目前空间站、太空电站等空天大功率电传输场景又对聚酰亚胺材料提出了更高的可靠性要求,因此亟待揭示空天极端环境对聚酰亚胺材料的损伤作用,并针对性地提高其综合性能。首先介绍并回顾了聚酰亚胺在航天器电传输装备中的应用;然后分析归纳了聚酰亚胺在充放电效应、电晕放电效应、原子氧侵蚀效应与极端温度环境下的不同损伤特性及失效机理;进一步介绍并分析了现有的改性调控方法及梯度设计制备方法;最后指出现有航天器电传输用聚酰亚胺材料改性调控及梯度绝缘优化研究存在的不足和可能的有效解决途径。

关键词: 聚酰亚胺, 充放电效应, 材料改性, 功能梯度材料, 绝缘优化

Abstract: Polyimide has excellent resistance to high temperature gradients, high insulation and radiation resistance, and is widely used in spacecraft electrical transmission devices and equipment. At present, aerospace high-power electrical transmission scenarios such as space stations and space power stations put forward higher reliability requirements for polyimide materials. Therefore, it is urgent to reveal the damage effect of aerospace extreme environments on polyimide materials, so as to improve its overall performance. This article first introduces and reviews the application of polyimide in spacecraft electrical transmission equipment. Then summarizes the different damage characteristics and failure mechanisms of polyimide in charge and discharge effects, corona discharge effects, atomic oxygen erosion effects and extreme temperature environments. Existing modification control methods and gradient design and preparation methods are analyzed. Limitations in current research on modification control and gradient insulation optimization of polyimide materials for high-voltage and high-power electrical transmission of existing spacecraft are also discussed, and the possible effective solutions are given.

Key words: polyimide, charge-discharge effect, material modification, functionally graded material, insulation optimization

中图分类号: