[1] LU K. Materials science. The future of metals[J]. Science, 2010, 328(5976):319-320. [2] 刘世锋, 宋玺, 薛彤, 等. 钛合金及钛基复合材料在航空航天的应用和发展[J]. 航空材料学报, 2020, 40(3):77-94. LIU S F, SONG X, XUE T, et al. Application and development of titanium alloy and titanium matrix composites in aerospace field[J]. Journal of Aeronautical Materials, 2020, 40(3):77-94(in Chinese). [3] 孙建刚, 高福洋, 高奇, 等. TC4钛合金热丝钨极氩弧焊接头组织性能研究[J]. 材料开发与应用, 2019, 34(2):9-13. SUN J G, GAO F Y, GAO Q, et al. Study on microstructure and properties of hot-wire-TIG welded joint of TC4 titanium alloy[J]. Development and Application of Materials, 2019, 34(2):9-13(in Chinese). [4] 招文龙, 刘小刚, 谢佩玉, 等. TC4钛合金扩散焊接头剪切疲劳性能研究[J]. 航空发动机, 2020, 46(3):99-102. ZHAO W L, LIU X G, XIE P Y, et al. Study on shear fatigue performance of TC4 titanium alloy diffusion bonded joints[J]. Aeroengine, 2020, 46(3):99-102(in Chinese). [5] 王世清, 邢博, 赵启喆, 等. 不同热处理对TC4/Ti60电子束焊接头微观组织及力学性能的影响[J]. 电焊机, 2020, 50(5):16-20, 133. WANG S Q, XING B, ZHAO Q Z, et al. Effect of heat treatment on microstructure and tensile properties of electron beam welded TC4/Ti60 joint[J]. Electric Welding Machine, 2020, 50(5):16-20, 133(in Chinese). [6] 杜振宾, 王卫玲, 熊然. TC18钛合金薄壁壳体真空电子束焊接形性控制研究[J]. 焊管, 2020, 43(10):29-34. DU Z B, WANG W L, XIONG R. Study on the weld shape and performance control of vacuum electron beam welding of TC18 titanium alloy thin-walled shell[J]. Welded Pipe and Tube, 2020, 43(10):29-34(in Chinese). [7] 邵帅, 黄永德, 陈玉华. 钛合金搅拌摩擦焊搅拌头研究现状[J]. 精密成形工程, 2019, 11(5):115-122. SHAO S, HUANG Y D, CHEN Y H. Research status on tools of friction stir welding in titanium alloy[J]. Journal of Netshape Forming Engineering, 2019, 11(5):115-122(in Chinese). [8] LU Y, TURNER R, BROOKS J, et al. Microstructural characteristics and computational investigation on electron beam welded Ti-6Al-4V alloy[J]. Journal of Materials Processing Technology, 2021, 288:116837. [9] 李亚江, 王娟, Puchkov P U. 高能束流焊接技术现状及发展[J]. 航空制造技术, 2011, 54(8):38-41. LI Y J, WANG J, PUCHKOV P U. Application and development of advanced welding technology by high-energy density beam[J]. Aeronautical Manufacturing Technology, 2011, 54(8):38-41(in Chinese). [10] 彭南翔. 激光深熔焊接铝合金孔内菲涅尔吸收研究[D]. 长沙:湖南大学, 2018. PENG N X. Study on Fresnel absorption in the keyhole during deep penetration laser welding of aluminum alloy 6016[D]. Changsha:Hunan University, 2018(in Chinese). [11] WANG Z M, OLIVEIRA J P, ZENG Z, et al. Laser beam oscillating welding of 5A06 aluminum alloys:Microstructure, porosity and mechanical properties[J]. Optics & Laser Technology, 2019, 111:58-65. [12] KE W C, BU X Z, OLIVEIRA J P, et al. Modeling and numerical study of keyhole-induced porosity formation in laser beam oscillating welding of 5A06 aluminum alloy[J]. Optics & Laser Technology, 2021, 133:106540. [13] LI S R, MI G Y, WANG C M. A study on laser beam oscillating welding characteristics for the 5083 aluminum alloy:Morphology, microstructure and mechanical properties[J]. Journal of Manufacturing Processes, 2020, 53:12-20. [14] 黄瑞生, 邹吉鹏, 宫建锋, 等. 激光扫描焊接熔池及等离子体动态行为[J]. 焊接学报, 2020, 41(3):11-16, 97. HUANG R S, ZOU J P, GONG J F, et al. Dynamic behavior of laser scanning welding pool and plasma[J]. Transactions of the China Welding Institution, 2020, 41(3):11-16, 97(in Chinese). [15] JIANG Z G, CHEN X, LI H, et al. Grain refinement and laser energy distribution during laser oscillating welding of Invar alloy[J]. Materials & Design, 2020, 186:108195. [16] 刘宁. TC4钛合金TIG填丝堆焊成型技术研究[D]. 哈尔滨:哈尔滨工业大学, 2013. LIU N. Research on Ti-6Al-4V shaped metal deposition by TIG welding with wire[D]. Harbin:Harbin Institute of Technology, 2013(in Chinese). [17] XU Z Z, DONG Z Q, YU Z H, et al. Relationships between microhardness, microstructure, and grain orientation in laser-welded joints with different welding speeds for Ti6Al4V titanium alloy[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(5):1277-1289. [18] AHMED T, RACK H J. Phase transformations during cooling in α+β titanium alloys[J]. Materials Science and Engineering:A, 1998, 243(1-2):206-211. [19] 官祥威. 光纤激光焦点旋转和垂直振动焊接方法及装置研究[D]. 北京:北京工业大学, 2016. GUAN X W. Investigation on the method and device of fiber laser welding with focus rotation and vertical oscillation[D]. Beijing:Beijing University of Technology, 2016(in Chinese). [20] 崔约贤, 王长利. 金属断口分析[M]. 哈尔滨:哈尔滨工业大学出版社, 1998. CUI Y X, WANG C L. Metal fracture analysis[M]. Harbin:Harbin Institute of Technology Press, 1998(in Chinese). [21] CHAMANFAR A, HUANG M F, PASANG T, et al. Microstructure and mechanical properties of laser welded Ti-10V-2Fe-3Al (Ti1023) titanium alloy[J]. Journal of Materials Research and Technology, 2020, 9(4):7721-7731. [22] 李坤, 王威, 单际国, 等. TC4钛合金光纤激光摆动焊抑制小孔型气孔的原因分析[J]. 焊接学报, 2016, 37(11):43-46, 131. LI K, WANG W, SHAN J G, et al. Analysis of keyhole-type pore suppressing in fiber laser welded TC4 titanium alloy with beam weaving[J]. Transactions of the China Welding Institution, 2016, 37(11):43-46, 131(in Chinese). [23] LIU H, NAKATA K, ZHANG J X, et al. Microstructural evolution of fusion zone in laser beam welds of pure titanium[J]. Materials Characterization, 2012, 65:1-7. [24] DU H B, HU L J, HU X Y, et al. Laser welding of TC-1 titanium alloy[J]. Journal of Materials Science & Technology, 2003, 19(5):475-478. [25] ZHANG D B, WANG M, SHU C S, et al. Dynamic keyhole behavior and keyhole instability in high power fiber laser welding of stainless steel[J]. Optics & Laser Technology, 2019, 114:1-9. [26] LIU C C, HE J S. Numerical analysis of thermal fluid transport behavior during electron beam welding of 2219 aluminum alloy plate[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(6):1319-1326. [27] 金湘中, 李力钧. 激光深熔焊接过程中小孔效应的试验研究[J]. 应用激光, 1999(5):293-295, 322. JIN X Z, LI L J. Diathermancy study on keyhole effects in laser deep penetration welding[J]. Applied Laser, 1999(5):293-295, 322(in Chinese). [28] NING J, ZHANG L J, YIN X Q, et al. Mechanism study on the effects of power modulation on energy coupling efficiency in infrared laser welding of highly-reflective materials[J]. Materials & Design, 2019, 178:107871. [29] DOWDEN J. Interaction of the keyhole and weld pool in laser keyhole welding[J]. Journal of Laser Applications, 2002, 14(4):204-209. [30] CUNNINGHAM R, ZHAO C, PARAB N, et al. Keyhole threshold and morphology in laser melting revealed by ultrahigh-speed X-ray imaging[J]. Science, 2019, 363(6429):849-852. [31] FABBRO R. Melt pool and keyhole behaviour analysis for deep penetration laser welding[J]. Journal of Physics D:Applied Physics, 2010, 43(44):445501. [32] LI L Q, GONG J F, XIA H B, et al. Influence of scan paths on flow dynamics and weld formations during oscillating laser welding of 5A06 aluminum alloy[J]. Journal of Materials Research and Technology, 2021, 11:19-32. |