[1] 朱自强, 吴宗成, 丁举春. 层流流动控制技术及应用[J]. 航空学报, 2011, 32(5):765-784. ZHU Z Q, WU Z C, DING J C. Laminar flow control technology and application[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(5):765-784(in Chinese). [2] 朱自强, 鞠胜军, 吴宗成. 层流流动主/被动控制技术[J]. 航空学报, 2016, 37(7):2065-2090. ZHU Z Q, JU S J, WU Z C. Laminar flow active/passive control technology[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(7):2065-2090(in Chinese). [3] 李权, 段卓毅, 张彦军, 等. 民机自然层流机翼研究进展[J]. 航空工程进展, 2013, 4(4):399-406. LI Q, DUAN Z Y, ZHANG Y J. et al. Progress inresearch on natural laminar wing for civil aircraft[J]. Advance in Aeronautical Science and Engineering, 2013, 4(4):399-406(in Chinese). [4] 杨一雄, 杨体浩, 白俊强, 等. HLFC后掠翼优化设计的若干问题[J]. 航空学报, 2018, 39(1):121448. YANG Y X, YANG T H, BAI J Q, et al. Problems in optimization design of HLFC sweep wing[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1):121448(in Chinese). [5] PRALITS J O. Optimization design of natural and hybrid laminar flow control on wings[D]. Stockholm:Royal Institute of Technology, 2003. [6] BECK N. Drag reduction by laminar flow control[J]. Energies, 2018, 11(1):252. [7] KRISHNAN K S G, BERTRAM O, SEIBEL O. Review of hybrid laminar flow control systems[J]. Progress in Aerospace Sciences, 2017, 93:24-52. [8] LAWSON S, CIARELLA A, WONG P W. Development of experimental techniques for hybrid laminar flow control in the ARA transonic wind tunnel[C]//2018 Applied Aerodynamics Conference. Reston:AIAA, 2018:3181. [9] SAEED T I, GRAHAM W R, HALL C A. Boundary-layer suction system design for laminar-flying-wing aircraft[J]. Journal of Aircraft, 2011, 48(4):1368-1379. [10] RISSE K, SCHUELTKE F, STUMPF E, et al. Conceptual wing design methodology for aircraft with hybrid laminar flow control[C]//52nd Aerospace Sciences Meeting. Reston:AIAA, 2014:0023. [11] 史亚云, 郭斌, 刘倩, 等. 基于能量观点的混合层流优化设计[J]. 北京航空航天大学学报, 2019, 45(6):1162-1174. SHI Y Y, GUO B, LIU Q, et al. Hybrid laminar flow optimization design from energy view[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(6):1162-1174(in Chinese). [12] 杨体浩, 白俊强, 史亚云, 等. 考虑吸气分布影响的HLFC机翼优化设计[J]. 航空学报, 2017, 38(12):121158. YANG T H, BAI J Q, SHI Y Y, et al. Optimization design for HLFC wings considering influence of suction distribution[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(12):121158(in Chinese). [13] GREEN J. Laminar flow control-Back to the future?[C]//38th Fluid Dynamics Conference and Exhibit. Reston:AIAA, 2008:3738. [14] MARTIN M, CARPENTER A, SARIC W. Swept-wing laminar flow control studies using Cessna O-2A test aircraft[M]//2008 US Air Force T & E Days. 2008:1636. [15] DRAKE A, SOLOMON W. Flight testing of a 30-degree sweep laminar flow wing for a high-altitude long-endurance aircraft[C]//28th AIAA Applied Aerodynamics Conference. Reston:AIAA, 2010:4571. [16] BELISLE M, NEALE T, REED H, et al. Design of a swept-wing laminar flow control flight experiment for transonic aircraft[C]//28th AIAA Applied Aerodynamics Conference. Reston:AIAA, 2010:4381. [17] MICHAEL R, ALEXANDER V, STEIN J. Design and manufacturing of a safety-critical aircraft Krueger flap[C]//SAMPE Europe Conference 2016. Covina:SAMPE, 2016:247-254. [18] PHILIPSEN I, POSTMA J, ARTOIS K. Wind tunnel test on the breakthrough laminar aircraft demonstrator Europe in the DNW-LLF[C]//53rd AIAA Aerospace Sciences Meeting. Reston:AIAA, 2015:1561. [19] SCHMITT V, AECHAMBAUD J P, HORTSTMANN K H, et al. Hybrid laminar fin investigations:ADP011101[R]. Chȃtillon:Office National d'Etudes et de Recherches Aerospatialea Toulouse (France), 2001. [20] WAGNER R D, MADDALON D V, CLARK R L, et al. High Reynolds number hybrid laminar flow control (HLFC) flight Experiment:IV. Suction system design and manufacture:NASA/CR-1999-209326[R]. Hampton:NASA Langley Research Center, 1999. [21] 钟海, 王启, 杨体浩. 层流翼型阻力测量试飞技术研究[J]. 飞行力学, 2021, 39(2):33-38. ZHONG H, WANG Q, YANG T H. Research on flight test technology for drag measurement of laminar airfoil[J]. Flight Dynamics, 2021, 39(2):33-38(in Chinese). [22] SMITH A M O. Transition, pressure gradient and stability theory:ES 26388[R]. Long Beach:Douglas Aircraft Co., 1956. [23] VAN INGEN J L. A suggested semi-empirical method for the calculation of the boundary layer transition region:VTH-74[R]. Deft:Technische Hogeschool Delft, 1956. [24] Dagenhart J R, Saric W S. Crossflow stability and transition experiments in swept-wing flow:TP-1999-209344[R]. Hampton:NASA Langley Research Center, 1999. |