杨体浩1, 白俊强1, 段卓毅2, 史亚云3, 邓一菊2, 周铸4
收稿日期:
2022-01-29
修回日期:
2022-03-09
出版日期:
2022-11-15
发布日期:
2022-05-09
通讯作者:
段卓毅,E-mail:Lcrong2015@163.com
E-mail:Lcrong2015@163.com
基金资助:
YANG Tihao1, BAI Junqiang1, DUAN Zhuoyi2, SHI Yayun3, DENG Yiju2, ZHOU Zhu4
Received:
2022-01-29
Revised:
2022-03-09
Online:
2022-11-15
Published:
2022-05-09
Supported by:
摘要: 层流技术是未来发展"绿色航空"的核心技术,巨大的减阻潜力使其成为航空领域内的研究热点。从喷气式客机具有的流动物理特征和转捩现象本质出发,阐述了自然层流(NLF)和混合层流(HLFC)技术的实现原理和适用范围,综述了国际上NLF/HLFC技术的研究现状及发展趋势。围绕基于CFD的层流翼设计技术前沿问题,从面向工程应用的转捩预测方法、非梯度类优化、梯度优化以及不确定性分析和鲁棒优化多个层面,系统论述了层流翼设计方法的研究现状和最新进展。同时,讨论了层流翼气动设计与全湍流气动设计问题的异同点,梳理了NLF和HLFC机翼气动设计理论。最后,顺应喷气式客机技术发展趋势,总结了层流设计技术面临的问题,给出了层流翼气动优化设计技术的未来发展方向和建议。
中图分类号:
杨体浩, 白俊强, 段卓毅, 史亚云, 邓一菊, 周铸. 喷气式客机层流翼气动设计综述[J]. 航空学报, 2022, 43(11): 527016.
YANG Tihao, BAI Junqiang, DUAN Zhuoyi, SHI Yayun, DENG Yiju, ZHOU Zhu. Aerodynamic design of laminar flow wings for jet aircraft: Review[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(11): 527016.
[1] VERMEERSCH O, YOSHIDA K, UEDA Y, et al. Natural laminar flow wing for supersonic conditions:Wind tunnel experiments, flight test and stability computations[J]. Progress in Aerospace Sciences, 2015, 79:64-91. [2] ARNAL D, CASALIS G. Laminar-turbulent transition prediction in three-dimensional flows[J]. Progress in Aerospace Sciences, 2000, 36(2):173-191. [3] SCHRAUF G. Status and perspectives of laminar flow[J]. The Aeronautical Journal, 2005, 109(1102):639-644. [4] COLLIER F. Overview of NASA's environmentally responsible aviation (ERA) project[C]//NASA Environmentally Responsible Aviation Project Pre-Proposal Meeting, 2010. [5] SARIC W S, REED H L, WHITE E B. Stability and transition of three-dimensional boundary layers[J]. Annual Review of Fluid Mechanics, 2003, 35(1):413-440. [6] PAREDES P, VENKATACHARI B S, CHOUDHARI M M, et al. Transition analysis for the CRM-NLF wind tunnel configuration[C]//AIAA SCITECH 2021 Forum. Reston:AIAA, 2021. [7] LANGTRY R B, MENTER F R. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes[J]. AIAA Journal, 2009, 47(12):2894-2906. [8] 朱自强, 鞠胜军, 吴宗成. 层流流动主/被动控制技术[J]. 航空学报, 2016, 37(7):2065-2090. ZHU Z Q, JU S J, WU Z C. Laminar flow active/passive control technology[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(7):2065-2090(in Chinese). [9] URANGA A, DRELA M, GREITZER E M, et al. Boundary layer ingestion benefit of the D8 transport aircraft[J]. AIAA Journal, 2017, 55(11):3693-3708. [10] CAVALLARO R, DEMASI L. Challenges, ideas, and innovations of joined-wing configurations:A concept from the past, an opportunity for the future[J]. Progress in Aerospace Sciences, 2016, 87:1-93. [11] ORR W M. The stability or instability of the steady motions of a perfect liquid and of a viscous liquid. part II:A viscous liquid[J]. Proceedings of the Royal Irish Academy Section A:Mathematical and Physical Sciences, 1907, 27:69-138. [12] SCHLICHTING H, GERSTE K. Grenzschicht-theorie[M]. Berlin:Springer-Verlag, 2006:27-47. [13] RESHOTKO E. Laminar flow control-viscous simulation:N84-33757[R]. Pairs:AGARD, 1984. [14] KRISHNAN K S G, BERTRAM O, SEIBEL O. Review of hybrid laminar flow control systems[J]. Progress in Aerospace Sciences, 2017, 93:24-52. [15] KREIN P, AHMAD A. Selected current challenges in the development of hybrid laminar flow control on transport aircraft[C]//Deutscher Luft-und Raumfahrtkongress. Darmstadt:DGLR, 2019. [16] ABBOTT I H, DOENHOFF A E, STIVERS J L, et al. Summary of airfoil data:NACA-TR-824[R]. Washington, D.C.:NASA, 1945. [17] BRASLOW A L. A history of suction-type laminar flow control with emphasis on flight research[M]. Charleston:CreateSpace Independent Publishing Platform, 2013. [18] JOSLIN R. D. Overview of laminar flow control:TP-1998-208705[R]. Washington, D.C.:NASA, 1998. [19] WAGNER R, BARTLETT D, COLLIER J F. Laminar flow-the past, present, and prospects[C]//2nd Shear Flow Conference. Reston:AIAA, 1989. [20] RUNYAN L, BIELAK G, BEHBEHANI R, et al. The 757 NLF glove flight test results:NASA-CR-12546[R]. Washington, D.C.:NASA, 1987. [21] HANKS G W, MOYER A E, NAGEL A L. Hybrid laminar flow control study final technical report:NASA-CR-165930[R]. Washington, D.C.:NASA, 1982. [22] BOBBITT P J, FERRIS J C, HARVEY W D, et al. Results for the hybrid laminar flow control experiment conducted in the NASA Langley 8-foot transonic pressure tunnel on a 7-foot chord model:NASA-TM-107582[R]. Washington, D.C.:NASA, 1992. [23] COLLIER J F JR. An overview of recent subsonic laminar flow control flight experiments[C]//24rd Fluid Dynamics Conference. Reston:AIAA, 1993. [24] RIEDEL H, SITZMANN M. In-flight investigations of atmospheric turbulence[J]. Aerospace Science and Technology, 1998, 2(5):301-319. [25] SCHRAUF G. Large-scale laminar flow tests evaluated with linear stability theory[J]. Journal of Aircraft, 2004, 41(2):224-230. [26] SCHRAUF G. On allowable step heights:lessons learned from the F100 and ATTAS flight tests[C]//6th European Conference on Computational Mechanics, 2018. [27] FITON J. Lessons learned from Dassault's Falcon 900 HLFC demonstrator[C]//CEAS/DragNet European Drag Reduction Conference, 2000. [28] THIBERT J J, QUEST A, ROBERT J P. The A320 laminar fin programme[C]//First European Forum on Laminar Flow Technology, 1992. [29] FUJINO M. Design and development of the HondaJet[J]. Journal of Aircraft, 2005, 42(3):755-764. [30] CROUCH J. Boundary-layer transition prediction for laminar flow control[C]//45th AIAA Fluid Dynamics Conference. Reston:AIAA, 2015. [31] CELLA U, QUAGLIARELLA D, DONELLI R, et al. Design and test of the UW-5006 transonic natural-laminar-flow wing[J]. Journal of Aircraft, 2010, 47(3):783-795. [32] VERMEERSCH O, MERY F, SAINGES O, et al. BLADE SESSION analysis of receptivity flight tests[C]//1st Aerospace Europe Conference, 2020. [33] RIVERS M B. NASA common research model:A history and future plans[C]//AIAA Aviation 2019 Forum. Reston:AIAA, 2019. [34] RISSE K, SCHUELTKE F, STUMPF E, et al. Conceptual wing design methodology for aircraft with hybrid laminar flow control[C]//52nd Aerospace Sciences Meeting. Reston:AIAA, 2014. [35] 乔志德. 自然层流超临界翼型的设计研究[J]. 流体力学实验与测量, 1998, 12(4):23-30. QIAO Z D. Design of supercritical airfoils with natural laminar flow[J]. Experiments and Measurements in Fluid Mechanics, 1998, 12(4):23-30(in Chinese). [36] 乔志德, 赵文华, 李育斌, 等. 超临界自然层流翼型NPU-L72513的风洞试验研究[J]. 气动实验与测量控制, 1993, 7(2):40-45. QIAO Z D, ZHAO W H, LI Y B, et al. The transonic wind tunnel test research for the supercritical natural laminar airfoil npu-l72513[J]. Journal of Experiments in Fluid Mechanics, 1993, 7(2):40-45(in Chinese). [37] ZHU J, GAO Z H, ZHAN H, et al. A high-speed nature laminar flow airfoil and its experimental study in wind tunnel with nonintrusive measurement technique[J]. Chinese Journal of Aeronautics, 2009, 22(3):225-229. [38] 赖国俊, 李政德, 张颖哲. 自然层流翼型高雷诺数风洞试验研究[J]. 航空科学技术, 2017, 28(8):12-15. LAI G J, LI Z D, ZHANG Y Z. Research on natural laminar airfoil wind tunnel test at high Reynolds number[J]. Aeronautical Science & Technology, 2017, 28(8):12-15(in Chinese). [39] 杜玺, 闫海津, 吴宇昂, 等. 跨声速自然层流短舱气动设计和风洞试验研究[J]. 航空科学技术, 2019, 30(9):63-72. DU X, YAN H J, WU Y A, et al. Aerodynamic design and wind tunnel test of a transonic natural laminar flow nacelle[J]. Aeronautical Science & Technology, 2019, 30(9):63-72(in Chinese). [40] 张彦军, 段卓毅, 雷武涛, 等. 超临界自然层流机翼设计及基于TSP技术的边界层转捩风洞试验[J]. 航空学报, 2019, 40(4):122429. ZHANG Y J, DUAN Z Y, LEI W T, et al. Design of supercritical natural laminar flow wing and its boundary layer transition wind tunnel test based on TSP technique[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(4):122429(in Chinese). [41] SHI Y Y, YANG T H, BAI J Q, et al. Research of transition criterion for semi-empirical prediction method at specified transonic regime[J]. Aerospace Science and Technology, 2019, 88:95-109. [42] 钟海, 王启, 杨体浩. 层流翼型阻力测量试飞技术研究[J]. 飞行力学, 2021, 39(2):33-38. ZHONG H, WANG Q, YANG T H. Research on flight test technology for drag measurement of laminar airfoil[J]. Flight Dynamics, 2021, 39(2):33-38(in Chinese). [43] 耿子海, 刘双科, 王勋年, 等. 二维翼型混合层流控制减阻技术试验研究[J]. 实验流体力学, 2010, 24(1):46-50. GENG Z H, LIU S K, WANG X N, et al. Test study of drag reduction technique by hybrid laminar flow control with two-dimension airfoil[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(1):46-50(in Chinese). [44] 王菲, 额日其太, 王强, 等. 后掠翼混合层流控制机制的实验[J]. 航空动力学报, 2010, 25(4):918-924. WANG F, ERIQITAI, WANG Q, et al. Experimental investigation of HLFC mechanism on swept wing[J]. Journal of Aerospace Power, 2010, 25(4):918-924(in Chinese). [45] SHI Y Y, CAO T S, YANG T H, et al. Estimation and analysis of hybrid laminar flow control on a transonic experiment[J]. AIAA Journal, 2019, 58(1):118-132. [46] YANG T H, ZHONG H, CHEN Y F, et al. Transition prediction and sensitivity analysis for a natural laminar flow wing glove flight experiment[J]. Chinese Journal of Aeronautics, 2021, 34(8):34-47. [47] 王猛, 钟海, 衷洪杰, 等. 红外热像边界层转捩探测的飞行试验应用研究[J]. 空气动力学学报, 2019, 37(1):160-167. WANG M, ZHONG H, ZHONG H J, et al. Flight test applications of boundary layer transition detection method using IR technique[J]. Acta Aerodynamica Sinica, 2019, 37(1):160-167(in Chinese). [48] YANG T H, CHEN Y F, SHI Y Y, et al. Stochastic investigation on the robustness of laminar-flow wings for flight tests[J]. AIAA Journal, 2022, 60(4):2266-2286. [49] MESSING R, KLOKER M J. Investigation of suction for laminar flow control of three-dimensional boundary layers[J]. Journal of Fluid Mechanics, 2010, 658:117-147. [50] COMTE F D P, LESIEUR M. Large-eddy simulation of transition to turbulence in a boundary layer developing spatially over a flat plate[J]. Journal of Fluid Mechanics, 1996, 326:1-36. [51] VASSBERG J, BUNING P, RUMSEY C. Drag prediction for the DLR-F4 wing/body using OVERFLOW and CFL3D on an overset mesh[C]//40th AIAA Aerospace Sciences Meeting & Exhibit. Reston:AIAA, 2002. [52] JESPERSEN D, PULLIAM T, BUNING P, et al. Recent enhancements to OVERFLOW (Navier-Stokes code)[C]//35th AIAA Aerospace Sciences Meeting & Exhibit. Reston:AIAA, 1997. [53] KENWAY G K W, MADER C A, HE P, et al. Effective adjoint approaches for computational fluid dynamics[J]. Progress in Aerospace Sciences, 2019, 110:100542. [54] NIELSEN E J, DISKIN B. Discrete adjoint-based design for unsteady turbulent flows on dynamic overset unstructured grids[J]. AIAA Journal, 2013, 51(6):1355-1373. [55] MA B P, WANG G, REN J, et al. Near field sonic boom analysis with HUNS3D solver[C]//55th AIAA Aerospace Sciences Meeting. Reston:AIAA, 2017. [56] 杨一雄, 杨体浩, 白俊强, 等. HLFC后掠翼优化设计的若干问题[J]. 航空学报, 2018, 39(1):121448. YANG Y X, YANG T H, BAI J Q, et al. Problems in optimization design of HLFC sweep wing[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1):121448(in Chinese). [57] CEBECI T. Stability and transition:Theory and application:Efficient numerical methods with computer programs[M]. Berlin:Springer, 2004:1-262. [58] GASTER M. A note on the relation between temporally-increasing and spatially-increasing disturbances in hydrodynamic stability[J]. Journal of Fluid Mechanics, 1962, 14(2):222-224. [59] MACK L M. Boundary-layer linear stability theory:ADP004046[R]. Virginia:Defense Technical Information Center, 1984. [60] MALIK M R, ORSZAG S A. Linear stability analysis of three-dimensional compressible boundary layers[J]. Journal of Scientific Computing, 1987, 2(1):77-97. [61] MALIK M R. Numerical methods for hypersonic boundary layer stability[J]. Journal of Computational Physics, 1990, 86(2):376-413. [62] ARNAL D. Boundary layer transition:predictions based on linear theory:N94-33884[R]. Paris:AGARD, 1994. [63] CHEN H H, CEBECI T. An evaluation of stability-based methods for transition of three-dimensional flows[M]//Laminar-turbulent transition. Berlin:Springer, 1990:327-336. [64] CEBECI T, STEWARTSON K. On stability and transition in three-dimensional flows[J]. AIAA Journal, 1980, 18(4):398-405. [65] 苏彩虹. 高超声速边界层转捩预测中的关键科学问题:感受性、扰动演化及转捩判据研究进展[J]. 空气动力学学报, 2020, 38(2):355-367. SU C H. Progress in key scientific problems of hypersonic bounary-layer transition prediction:Receptivity, evolution of disturbances and transition criterion[J]. Acta Aerodynamica Sinica, 2020, 38(2):355-367(in Chinese). [66] HERBERT T, BERTOLOTTI F P. Stability analysis of nonparallel boundary layers[J]. Bulletin of the American Physical Society, 1987, 32(2079):590. [67] 刘一方. 超声速平板边界层二次失稳和斜波失稳研究[D]. 天津:天津大学, 2011. LIU Y F. A study of the secondary instability and oblique mode breakdown in the supersonic flat-plate boundary layers[D]. Tianjin:Tianjin University, 2011(in Chinese). [68] 赵磊. 高超声速后掠钝板边界层横流定常涡失稳的研究[D]. 天津:天津大学, 2017. ZHAO L. Study on instability of stationary crossflow vortices in hypersonic swept blunt plate boundary layers[D]. Tianjin:Tianjin University, 2017(in Chinese). [69] 徐国亮, 刘刚, 江雄. Ma数对后掠机翼流动非线性失稳的影响[J]. 中国科学:物理学力学天文学, 2014, 44(7):759-770. XU G L, LIU G, JIANG X. The Mach number effect on the nonlinear instability of swept-wing flows[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2014, 44(7):759-770(in Chinese). [70] STREIT T, HORSTMANN K, SCHRAUF G, et al. Complementary numerical and experimental data analysis of the ETW Telfona Pathfinder wing transition tests[C]//49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2011. [71] 杨体浩, 史亚云, 王雨桐, 等. 基于离散伴随的层流翼优化设计方法研究[J/OL]. 航空学报,(2022-06-29)[2022-08-26]. https://kns.cnki.net/kns8/defaultresult/index. YANG T H, SHI Y Y, WANG Y T, et al. The discrete adjoint-based optimization approach study for laminar flow wings[J/OL]. Acta Aeronautica et Astronautica Sinica,(2022-06-29)[2022-08-26]. https://kns.cnki.net/kns8/defaultresult/index (in Chinese). [72] SHI Y Y, MADER C A, HE S C, et al. Natural laminar-flow airfoil optimization design using a discrete adjoint approach[J]. AIAA Journal, 2020, 58(11):4702-4722. [73] SHI Y Y, MADER C A, MARTINS J R R A. Natural laminar flow wing optimization using a discrete adjoint approach[J].Structural and Multidisciplinary Optimization, 2021, 64(2):541-562. [74] ARNAL D. Transition prediction in transonic flow[M]. Berlin:Springer Berlin Heidelberg, 1989:253-262. [75] PERRAUD J, ARNAL D, CASALIS G, et al. Automatic transition predictions using simplified methods[J]. AIAA Journal, 2009, 47(11):2676-2684. [76] KRUMBEIN A, KRIMMELBEIN N, SCHRAUF G. Automatic transition prediction in hybrid flow solver, part 1:Methodology and sensitivities[J]. Journal of Aircraft, 2009, 46(4):1176-1190. [77] LIAO W, MALIK M R, LEE-RAUSCH E M, et al. Boundary-layer stability analysis of the Mean flows obtained using unstructured grids[J]. Journal of Aircraft, 2014, 52(1):49-63. [78] SHI Y Y, GROSS R, MADER C A, et al. Transition prediction in a RANS solver based on linear stability theory for complex three-dimensional configurations[C]//2018 AIAA Aerospace Sciences Meeting. Reston:AIAA, 2018. [79] CAMPBELL R L, LYNDE M N. Building a practical natural laminar flow design capability[C]//35th AIAA Applied Aerodynamics Conference. Reston:AIAA, 2017. [80] HARTSHORN F, BELISLE M, REED H. Computational optimization of a natural laminar flow experimental wing glove[C]//50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2012. [81] 杨体浩, 白俊强, 史亚云, 等. 考虑吸气分布影响的HLFC机翼优化设计[J]. 航空学报, 2017, 38(12):121158. YANG T H, BAI J Q, SHI Y Y, et al. Optimization design for HLFC wings considering influence of suction distribution[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(12):121158(in Chinese). [82] HAN Z H, CHEN J, ZHANG K S, et al. Aerodynamic shape optimization of natural-laminar-flow wing using surrogate-based approach[J]. AIAA Journal, 2018, 56(7):2579-2593. [83] MENTER F R, LANGTRY R, VÖLKER S. Transition modelling for general purpose CFD codes[J]. Flow, Turbulence and Combustion, 2006, 77(1):277-303. [84] GRABE C, KRUMBEIN A. Correlation-based transition transport modeling for three-dimensional aerodynamic configurations[J]. Journal of Aircraft, 2013, 50(5):1533-1539. [85] CHOI J H, KWON O J. Enhancement of a correlation-based transition turbulence model for simulating crossflow instability[J]. AIAA Journal, 2015, 53(10):3063-3072. [86] GRABE C, NIE S Y, KRUMBEIN A. Transport modeling for the prediction of crossflow transition[J]. AIAA Journal, 2018, 56(8):3167-3178. [87] WANG G, MIAN H H, YE Z Y, et al. Numerical study of transitional flow around NLR-7301 airfoil using correlation-based transition model[J]. Journal of Aircraft, 2014, 51(1):342-350. [88] 徐家宽, 白俊强, 乔磊, 等. 后掠翼边界层横流不稳定转捩预测模型[J]. 航空动力学报, 2015, 30(4):927-935. XU J K, BAI J Q, QIAO L, et al. Prediction model of cross-flow instability transition in swept wing boundary layers[J]. Journal of Aerospace Power, 2015, 30(4):927-935(in Chinese). [89] 鞠胜军, 阎超, 叶志飞. γ-Reθt-CF转捩模型在Spalart-Allmaras湍流模型中的推广及验证[J]. 航空学报, 2017, 38(4):120383. JU S J, YAN C, YE Z F. Genevalization and validation of γ-Reθt-CF transition modeling in combination with Spalart-Allmaras turbulence model[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(4):120383(in Chinese). [90] 史亚云, 白俊强, 华俊, 等. 基于当地变量的横流转捩预测模型的研究与改进[J]. 航空学报, 2016, 37(3):780-789. SHI Y Y, BAI J Q, HUA J, et al. Study and modification of cross-flow induced transition model based on local variables[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(3):780-789(in Chinese). [91] CODER J G, MAUGHMER M D. Computational fluid dynamics compatible transition modeling using an amplification factor transport equation[J]. AIAA Journal, 2014, 52(11):2506-2512. [92] OBERKAMPF W L, TRUCANO T G. Verification and validation in computational fluid dynamics[J]. Progress in Aerospace Sciences, 2002, 38(3):209-272. [93] 徐家宽, 白俊强. 基于边界层相似性解的放大因子输运模型[J]. 航空学报, 2016, 37(4):1103-1113. XU J K, BAI J Q. Amplification factor transport model based on boundary layer similarity solution[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(4):1103-1113(in Chinese). [94] 史亚云, 白俊强, 华俊, 等. 基于放大因子与Spalart-Allmaras湍流模型的转捩预测[J]. 航空动力学报, 2015, 30(7):1670-1677. SHI Y Y, BAI J Q, HUA J, et al. Transition prediction based on amplification factor and Spalart-Allmaras turbulence model[J]. Journal of Aerospace Power, 2015, 30(7):1670-1677(in Chinese). [95] XU J K, QIAO L, BAI J Q. Improved local amplification factor transport equation for stationary crossflow instability in subsonic and transonic flows[J]. Chinese Journal of Aeronautics, 2020, 33(12):3073-3081. [96] WALTERS D K, LEYLEK J H. A new model for boundary layer transition using a single-point RANS approach[J]. Journal of Turbomachinery, 2004, 126(1):193-202. [97] WANG L, XIAO L H, FU S. A modular RANS approach for modeling hypersonic flow transition on a scramjet-forebody configuration[J]. Aerospace Science and Technology, 2016, 56:112-124. [98] 徐晶磊, 周禹, 乔磊, 等. 基于湍动能输运的一方程转捩模型[J]. 推进技术, 2019, 40(4):741-749. XU J L, ZHOU Y, QIAO L, et al. One-equation transition model based on turbulent kinetic energy transport[J]. Journal of Propulsion Technology, 2019, 40(4):741-749(in Chinese). [99] QIU Y S, BAI J Q, LIU N, et al. Global aerodynamic design optimization based on data dimensionality reduction[J]. Chinese Journal of Aeronautics, 2018, 31(4):643-659. [100] WILKE G. Variable-fidelity methodology for the aerodynamic optimization of helicopter rotors[J]. AIAA Journal, 2019, 57(8):3145-3158. [101] LI J C, BOUHLEL M A, MARTINS J R R A. Data-based approach for fast airfoil analysis and optimization[J]. AIAA Journal, 2018, 57(2):581-596. [102] BAILLY J, BAILLY D. Multifidelity aerodynamic optimization of a helicopter rotor blade[J]. AIAA Journal, 2019, 57(8):3132-3144. [103] CHERNUKHIN O, ZINGG D W. Multimodality and global optimization in aerodynamic design[J]. AIAA Journal, 2013, 51(6):1342-1354. [104] MITCHELL M. An introduction to genetic algorithms[M]. Boston:The MIT Press, 1998. [105] HOLLAND J H. Adaptation in natural an artificial systems:An introductory analysis with applications to biology, control, and artificial intelligence[M]. Boston:The MIT Press, 1992. [106] STORN R, PRICE K. Minimizing the real functions of the ICEC'96 contest by differential evolution[C]//Proceedings of IEEE International Conference on Evolutionary Computation. Piscataway:IEEE Press, 1996:842-844. [107] 杨体浩, 白俊强, 王丹, 等. 考虑发动机干扰的尾吊布局后体气动优化设计[J]. 航空学报, 2014, 35(7):1836-1844. YANG T H, BAI J Q, WANG D, et al. Aerodynamic optimization design for after-body of tail-mounted engine layout considering interference of engines[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(7):1836-1844(in Chinese). [108] DORIGO M, MANIEZZO V, COLORNI A. Ant system:Optimization by a colony of cooperating agents[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 1996, 26(1):29-41. [109] CLERC M. Particle swarm optimization[M]. Chippenham:Antony Rowe Ltd, 2010. [110] LIAN Y S, OYAMA A, LIOU M S. Progress in design optimization using evolutionary algorithms for aerodynamic problems[J]. Progress in Aerospace Sciences, 2010, 46(5-6):199-223. [111] FORRESTER A I J, KEANE A J. Recent advances in surrogate-based optimization[J]. Progress in Aerospace Sciences, 2009, 45(1-3):50-79. [112] 韩忠华, 许晨舟, 乔建领, 等. 基于代理模型的高效全局气动优化设计方法研究进展[J]. 航空学报, 2020, 41(5):623344. HAN Z H, XU C Z, QIAO J L, et al. Recent progress of efficient global aerodynamic shape optimization using surrogate-based approach[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5):623344(in Chinese). [113] 周铸, 黄江涛, 高正红, 等. 民用飞机气动外形数值优化设计面临的挑战与展望[J]. 航空学报, 2019, 40(1):522370. ZHOU Z, HUANG J T, GAO Z H, et al. Challenges and prospects of numerical optimization design for large civil aircraft aerodynamic shape[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1):522370(in Chinese). [114] 马晓永, 张彦军, 段卓毅, 等. 自然层流机翼气动外形优化研究[J]. 空气动力学学报, 2015, 33(6):812-817. MA X Y, ZHANG Y J, DUAN Z Y, et al. Study of aerodynamic shape optimization for natural laminar wing[J]. Acta Aerodynamica Sinica, 2015, 33(6):812-817(in Chinese). [115] 陈永彬, 唐智礼, 盛建达. 跨音速自然层流翼型多目标优化设计[J]. 计算物理, 2016, 33(3):283-296. CHEN Y B, TANG Z L, SHENG J D. Multi-objective optimization for natural laminar flow airfoil in transonic flow[J]. Chinese Journal of Computational Physics, 2016, 33(3):283-296(in Chinese). [116] ZHANG Y F, FANG X M, CHEN H X, et al. Supercritical natural laminar flow airfoil optimization for regional aircraft wing design[J]. Aerospace Science and Technology, 2015, 43:152-164. [117] TANG Z L, ZHANG M F, HU X. Optimal shape design and transition uncertainty analysis of transonic axisymmetric natural laminar flow nacelle at high Reynolds number[J]. Aerospace Science and Technology, 2022, 121:107345. [118] FAN T L, SONG W P, CHEN J, et al. Hybrid optimization design of natural-laminar-flow(NLF) supercritical airfoil and infinite swept wing[C]//35th AIAA Applied Aerodynamics Conference. Reston:AIAA, 2017. [119] 史亚云, 郭斌, 刘倩, 等. 基于能量观点的混合层流优化设计[J]. 北京航空航天大学学报, 2019, 45(6):1162-1174. SHI Y Y, GUO B, LIU Q, et al. Hybrid laminar flow optimization design from energy view[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(6):1162-1174(in Chinese). [120] SHI Y Y, BAI J Q, HUA J, et al. Numerical analysis and optimization of boundary layer suction on airfoils[J]. Chinese Journal of Aeronautics, 2015, 28(2):357-367. [121] SUDHI A, ELHAM A, BADRYA C. Coupled boundary-layer suction and airfoil optimization for hybrid laminar flow control[J]. AIAA Journal, 2021, 59(12):5158-5173. [122] SUDHI A, RADESPIEL R, BADRYA C. Design of transonic swept wing for HLFC application[C]//AIAA Aviation 2021 Forum. Reston:AIAA, 2021. [123] STREIT T, WEDLER S, KRUSE M. DLR natural and hybrid transonic laminar wing design incorporating new methodologies[J]. The Aeronautical Journal, 2015, 119(1221):1303-1326. [124] LI J C, ZHANG M Q, TAY C M J, et al. Low-Reynolds-number airfoil design optimization using deep-learning-based tailored airfoil modes[J]. Aerospace Science and Technology, 2022, 121:107309. [125] WANG L Y, WANG C, WANG S Y, et al. A novel ANN-Based boundary strategy for modeling micro/nanopatterns on airfoil with improved aerodynamic performances[J]. Aerospace Science and Technology, 2022, 121:107347. [126] 华俊, 张仲寅, 付大卫, 等. 一种跨音速翼型和机翼设计方法的新进展[J]. 航空学报, 1997, 18(5):519-522. HUA J, ZHANG Z Y, FU D W, et al. CFD software for transonic airfoil and wing design-An update[J]. Acta Aeronautica et Astronautica Sinica, 1997, 18(5):519-522(in Chinese). [127] 陈静, 宋文萍, 朱震, 等. 跨声速层流翼型的混合反设计/优化设计方法[J]. 航空学报, 2018, 39(12):122219. CHEN J, SONG W P, ZHU Z, et al. A hybrid inverse/direct optimization design method for transonic laminar flow airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12):122219(in Chinese). [128] YANG Y X, BAI J Q, LI L, et al. An inverse design method with aerodynamic design optimization for wing glove with hybrid laminar flow control[J]. Aerospace Science and Technology, 2019, 95:105493. [129] CAMPBELL R, CAMPBELL M, STREIT T. Progress toward efficient laminar flow analysis and design[C]//29th AIAA Applied Aerodynamics Conference. Reston:AIAA, 2011. [130] SEITZ A, HVBNER A, RISSE K. The DLR TuLam project:Design of a short and medium range transport aircraft with forward swept NLF wing[J]. CEAS Aeronautical Journal, 2020, 11(2):449-459. [131] LYNDE M N, CAMPBELL R L, HILLER B R. A design exploration of natural laminar flow applications for the SUSAN electrofan concept[C]//AIAA SCITECH 2022 Forum. Reston:AIAA, 2022. [132] MARTINS J, KENWAY G, BURDETTE D A, et al. High-fidelity multidisciplinary design optimization of aircraft configurations:NASA-CR-219647[R]. Washington, D.C.:NASA, 2017. [133] CHEN S, LYU Z J, KENWAY G K W, et al. Aerodynamic shape optimization of common research model wing-body-tail configuration[J]. Journal of Aircraft, 2015, 53(1):276-293. [134] MADER C A, KENWAY G K, MARTINS J R R A, et al. Aerostructural optimization of the D8 wing with varying cruise Mach numbers[C]//18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston:AIAA, 2017. [135] SECCO N R. Component-based aerodynamic shape optimization using overset meshes[D]. Ann Arbor:University of Michigan, 2018. [136] PRALITS J O. Optimal design of natural and hybrid laminar flow control on wings[D]. Stockholm:Mekanik, 2003. [137] AMOIGNON O, PRALITS J, HANIFI A, et al. Shape optimization for delay of laminar-turbulent transition[J]. AIAA Journal, 2006, 44(5):1009-1024. [138] KHAYATZADEH P, NADARAJAH S. Aerodynamic shape optimization of natural laminar flow (NLF) airfoils[C]//50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2012. [139] ZHANG P F, LU J, WANG Z D, et al. Adjoint-based optimization method with linearized SST turbulence model and a frozen gamma-theta transition model approach for turbomachinery design[C]//Proceedings of ASME Turbo Expo 2015:Turbine Technical Conference and Exposition. New York:ASME, 2015. [140] LYU Z. High-fidelity aerodynamic design optimization of aircraft configurations[D]. Ann Arbor:University of Michigan, 2014. [141] LEE J D, JAMESON A. Natural-laminar-flow airfoil and wing design by adjoint method and automatic transition prediction[C]//47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2009. [142] DRIVER J, ZINGG D W. Numerical aerodynamic optimization incorporating laminar-turbulent transition prediction[J]. AIAA Journal, 2007, 45(8):1810-1818. [143] RASHAD R, ZINGG D W. Aerodynamic shape optimization for natural laminar flow using a discrete-adjoint approach[J]. AIAA Journal, 2016, 54(11):3321-3337. [144] ZANG T A. Needs and opportunities for uncertainty-based multidisciplinary design methods for aerospace vehicles:NASA-TM-107582[R]. Washington, D.C.:NASA, 2002. [145] ZHAO H, GAO Z H, XU F, et al. Correction to:Review of robust aerodynamic design optimization for air vehicles[J]. Archives of Computational Methods in Engineering, 2019, 26(5):1691. [146] YAO W, CHEN X Q, LUO W C, et al. Review of uncertainty-based multidisciplinary design optimization methods for aerospace vehicles[J]. Progress in Aerospace Sciences, 2011, 47(6):450-479. [147] RALLABHANDI S K, WEST T K, NIELSEN E J. Uncertainty analysis and robust design of low-boom concepts using atmospheric adjoints[J]. Journal of Aircraft, 2016, 54(3):902-917. [148] SCHAEFER J A, CARY A W, MANI M, et al. Uncertainty quantification and sensitivity analysis of SA turbulence model coefficients in two and three dimensions[C]//55th AIAA Aerospace Sciences Meeting. Reston:AIAA, 2017. [149] CHASSAING J C, LUCOR D. Stochastic investigation of flows about airfoils at transonic speeds[J]. AIAA Journal, 2010, 48(5):938-950. [150] ZHOU Y C, LU Z Z. Active polynomial chaos expansion for reliability-based design optimization[J]. AIAA Journal, 2019, 57(12):5431-5446. [151] LIU S Y, WANG Y B, QIN N, et al. Quantification of airfoil aerodynamic uncertainty due to pressure-sensitive paint thickness[J]. AIAA Journal, 2019, 58(4):1432-1440. [152] YANG T H, CHEN Y F, SHI Y Y, et al. Stochastic investigation on the robustness of laminar-flow wings for flight tests[J]. AIAA Journal, 2022, 60(4):2266-2286. [153] BARKLAGE A, RÖMER U, BERTRAM A, et al. Analysis and uncertainty quantification of a hybrid laminar flow control system[J]. AIAA Journal, 2022:1-15. [154] POHYA A A, WICKE K, KILIAN T. Introducing variance-based global sensitivity analysis for uncertainty enabled operational and economic aircraft technology assessment[J]. Aerospace Science and Technology, 2022, 122:107441. [155] LYNDE M N, CAMPBELL R L, RIVERS M B, et al. Preliminary results from an experimental assessment of a natural laminar flow design method[C]//AIAA SCITECH 2019 Forum. Reston:AIAA, 2019. [156] CROUCH J, SUTANTO M, WITKOWSKI D, et al. Assessment of the national transonic facility for natural laminar flow testing[C]//48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2010. [157] PECNIK R, WITTEVEEN J, IACCARINO G. Uncertainty quantification for laminar-turbulent transition prediction in RANS turbomachinery applications[C]//49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2011. [158] ZHAO H, GAO Z H, GAO Y, et al. Effective robust design of high lift NLF airfoil under multi-parameter uncertainty[J]. Aerospace Science and Technology, 2017, 68:530-542. [159] ZHAO H, GAO Z H, WANG C, et al. Robust design of high speed natural-laminar-flow airfoil for high lift[C]//55th AIAA Aerospace Sciences Meeting. Reston:AIAA, 2017. [160] QUAGLIARELLA D, IULIANO E. Uncertainty sources in the baseline configuration for robust design of a supersonic natural laminar flow wing-body[M]//Computational methods in applied sciences. Cham:Springer International Publishing, 2018:371-390. [161] QUAGLIARELLA D, IULIANO E. Robust design of a supersonic natural laminar flow wing-body[C]//IEEE Computational Intelligence Magazine. Piscataway:IEEE Press, 2017:14-27. [162] XIONG N, TAO Y, LIU Z Y, et al. Uncertainty quantification-based robust aerodynamic optimization of laminar flow nacelle[J]. Modern Physics Letters B, 2018, 32(12&13):1840048. [163] HOLLOM J, QIN N. Quantification and multi-point optimization of natural laminar flow airfoil robustness to transition amplification factor[C]//2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston:AIAA, 2018. [164] HOLLOM M J. Optimisation of natural laminar flow aerofoils and wings for robustness to critical transition amplification factor[D]. Sheffield:University of Sheffield, 2019. [165] SABATER C, BEKEMEYER P, GÖRTZ S. Robust design of transonic natural laminar flow wings under environmental and operational uncertainties[C]//AIAA SCITECH 2021 Forum. Reston:AIAA, 2021. |
[1] | 刘琦, 史勇杰, 胡志远, 徐国华. 共轴刚性旋翼气动及噪声特性的参数影响分析[J]. 航空学报, 2024, 45(9): 528856-528856. |
[2] | 王梓旭, 李攀, 鲁可, 朱振华, 陈仁良. 共轴刚性旋翼高速直升机配平策略优化设计[J]. 航空学报, 2024, 45(9): 529069-529069. |
[3] | 王雪鹤, 柴春硕, 邢世龙, 樊枫, 黄水林. 共轴高速直升机反流区翼型设计及减阻机理[J]. 航空学报, 2024, 45(9): 529960-529960. |
[4] | 骆燕燕, 杨硕, 潘晓松, 赵绪怀, 张莉. 航空用高速连接器信号反射抑制与优化设计[J]. 航空学报, 2024, 45(7): 328937-328937. |
[5] | 贾文斌, 方磊, 张根, 史剑, 何泽侃, 宣海军. CNT树脂基复合材料断裂韧性的优化设计[J]. 航空学报, 2024, 45(7): 428971-428971. |
[6] | 戴今钊, 陈海昕. 流场波系引导的三维消波翼优化设计方法[J]. 航空学报, 2024, 45(6): 628942-628942. |
[7] | 陈树生, 贾苜梁, 刘衍旭, 高正红, 向星皓. 变体飞行器变形方式及气动布局设计关键技术研究进展[J]. 航空学报, 2024, 45(6): 629595-629595. |
[8] | 李广佳, 王红波, 张凯, 仪志胜. 临近空间太阳能无人机增升减阻技术综述[J]. 航空学报, 2024, 45(5): 529644-529644. |
[9] | 张定华, 何智伟, 张学宝, 罗明. 叶片多尺度表面对压气机气动性能影响及其高性能制造研究进展[J]. 航空学报, 2024, 45(13): 629642-629642. |
[10] | 韦鼎元, 章思龙, 韦健飞, 左婧滢, 李欣, 鲍文. 高马赫数燃烧室离散孔燃料膜热防护和减阻特性[J]. 航空学报, 2024, 45(11): 529075-529075. |
[11] | 王四季, 张羽薇, 黄开明, 吕彪, 赵海凤, 王虎, 廖明夫. 基于改进粒子群算法的直升机动力涡轮转子系统优化方法[J]. 航空学报, 2024, 45(1): 228608-228608. |
[12] | 陆凤霞, 韦坤, 王春雷, 鲍和云, 朱如鹏. 直升机中减三相流金属屑末可达性[J]. 航空学报, 2024, 45(1): 128524-128524. |
[13] | 曾繁宇, 邱云龙, 曹占伟, 张伦, 陈伟芳. 超声速湍流边界层阵列式微吹气流动控制与减阻特性[J]. 航空学报, 2023, 44(S2): 729396-729396. |
[14] | 高世琦, 丁博, 解旭祯, 李铮, 陈林, 钱首元, 焦子涵, 白光辉. 等离子体激励在高速流动中的减阻机制[J]. 航空学报, 2023, 44(S2): 729373-729373. |
[15] | 杨倩, 郑皓冉, 程显达, 董威. 基于引气控制的热气防冰优化设计方法[J]. 航空学报, 2023, 44(S2): 729285-729285. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学