[1] 朱自强, 吴宗成, 丁举春. 层流流动控制技术及应用[J]. 航空学报,2011,32(5):765-784. ZHU Z Q, WU Z C, DING J C. Laminar flow control technology and application[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(5):765-784(in Chinese). [2] 朱自强, 鞠胜军, 吴宗成. 层流流动主/被动控制技术[J]. 航空学报,2016,37(7):2065-2090. ZHU Z Q, JU S J, WU Z C. Laminar flow active/passive control technology[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(7):2065-2090(in Chinese). [3] SCHRAUF G. Status and perspectives of laminar flow[J]. The Aeronautical Journal, 2005, 109(1102):639-644. [4] 赵欢, 高正红, 夏露. 高速自然层流翼型高效气动稳健优化设计方法[J]. 航空学报, 2022, 43(1):124894. ZHAO H, GAO Z H, XIA L. Efficient robust aerodynamic design optimization method for high-speed NLF airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1):124894(in Chinese). [5] 方宝瑞. 飞机气动布局设计[M]. 北京:航空工业出版社, 1997:504-506. FANG B R. Aerodynamic layout design of aircraft[M]. Beijing:Aviation Industry Press, 1997:504-506(in Chinese). [6] CAMPBELL R L, LYNDE M N. Building a practical natural laminar flow design capability[C]//35th AIAA Applied Aerodynamics Conference, 2017. [7] CELLA U, QUAGLIARELLA D, DONELLI R, et al. Design and test of the UW-5006 transonic natural-laminar-flow wing[J]. Journal of Aircraft, 2010, 47(3):783-795. [8] HUE D, VERMEERSCH O, DUCHEMIN J, et al. Wind-tunnel and CFD investigations focused on transition and performance predictions of laminar wings[J]. AIAA Journal, 2017, 56(1):132-145. [9] SHI Y Y, YANG T H, BAI J Q, et al. Research of transition criterion for semi-empirical prediction method at specified transonic regime[J]. Aerospace Science and Technology, 2019, 88:95-109. [10] SHI Y, GROSS R, MADER C, et al. Transition prediction in a RANS solver based on linear stability theory for complex three-dimensional configurations[C]//2018 AIAA Aerospace Sciences Meeting, 2018. [11] 耿子海,刘双科,王勋年,等. 二维翼型混合层流控制减阻技术试验研究[J]. 实验流体力学,2010, 24(1):46-50. GENG Z H, LIU S K, WANG X N, et al. Test study of drag reduction technique by hybrid laminar flow control with two-dimension airfoil[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(1):46-50(in Chinese). [12] 王菲,额日其太,王强,等. 后掠翼混合层流控制机制的实验[J]. 航空动力学报, 2010, 25(4):918-924. WANG F, ERIQITAI, WANG Q, et al. Experimental investigation of HLFC mechanism on swept wing[J]. Journal of Aerospace Power, 2010, 25(4):918-924(in Chinese). [13] 王菲,额日其太,王强,等. 基于升华法的后掠翼混合层流控制研究[J]. 实验流体力学, 2010, 24(3):54-58. WANG F, ERIQITAI, WANG Q, et al. Investigation of HLFC on swept wing based on sublimation technique[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(3):54-58(in Chinese). [14] 邓双国, 额日其太, 聂俊杰. 后掠翼模型混合层流控制实验研究[J]. 实验流体力学, 2011, 25(3):30-33. DENG S G, ERIQITAI, NIE J J. Hybrid laminar flow control experiment on swept wing model[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(3):30-33(in Chinese). [15] 张彦军, 段卓毅, 雷武涛, 等. 超临界自然层流机翼设计及基于TSP技术的边界层转捩风洞试验[J]. 航空学报, 2019, 40(4):122429. ZHANG Y J, DUAN Z Y, LEI W T, et al. Design of supercritical natural laminar flow wing and its boundary layer transition wind tunnel test based on TSP technique[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(4):122429(in Chinese). [16] XU J K, FU Z Y, BAI J Q, et al. Study of boundary layer transition on supercritical natural laminar flow wing at high Reynolds number through wind tunnel experiment[J]. Aerospace Science and Technology, 2018, 80:221-231. [17] 李强, 江涛, 陈苏宇, 等. 激波风洞边界层转捩测量技术及应用[J]. 航空学报,2019,40(8):122740. LI Q, JIANG T, CHEN S Y, et al. Measurement technique and application of boundary layer transition in shock tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(8):122740(in Chinese). [18] 陈苏宇, 江涛, 常雨, 等. 高超声速钝头体边界层转捩试验[J]. 航空学报,2020, 41(12):124098. CHEN S Y, JIANG T, CHANG Y, et al. Hypersonic boundary layer transition over bodies with blunt nosetip[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12):124098(in Chinese). [19] LYNDE M, CAMPBELL R, VIKEN S. Additional findings from the common research model natural laminar flow wind tunnel test[C]//AIAA Aviation 2019 Forum. 2019. [20] CAMPBELL R L, LYNDE M N. Natural laminar flow design for wings with moderate sweep[C]//34th AIAA Applied Aerodynamics Conference, 2016. [21] FOWELL L, ANTONATOS P. Some results from the X-21 A program-part 2:laminar flow flight test results on the X-21 A[R]. 1965. [22] SOMERS D. Design and exper1imental results for a natural-laminar-flow airfoil for general aviation applications[R]. 1981. [23] JOSLIN R. Overview of laminar flow control[R]. 1998. [24] ANDERSON B, Jr MEYER R. Effects of wing sweep on boundary-layer transition for a smooth F-14A wing at Mach numbers from 0.700 to 0.825[R]. 1990. [25] BRASLOW A L. History of suction-type laminar-flow control with emphasis on flight research:Monographs in aerospace history number 13[R]. 1999 [26] BELISLE M, NEALE T, REED H, et al. Design of a swept-wing laminar flow control flight experiment for transonic aircraft[C]//28th AIAA Applied Aerodynamics Conference, 2010:4381. [27] ROBERTS M, REED H, SARIC W. A transonic laminar-flow wing glove flight experiment:Computational evaluation and linear stability[C]//30th AIAA Applied Aerodynamics Conference, 2012:2668. [28] CROUCH J. Boundary-layer transition prediction for laminar flow control (invited)[C]//45th AIAA Fluid Dynamics Conference, 2015:2472. [29] KREIN A, WILLIAMS G. Flightpath 2050:Europe's vision for aeronautics[C]//Innovation for Sustainable Aviation in a Global Environment:Proceedings of the Sixth European Aeronautics Days, 2012:63. [30] CEBECI T. Stability and transition:theory and application:efficient numerical methods with computer programs[M]. Long Beach:Horizons Pub, 2004. [31] JUNIPER M P, HANIFI A, THEOFILIS V. Modal stability TheoryLecture notes from the FLOW-NORDITA summer school on advanced instability methods for complex flows, Stockholm, Sweden, 2013[J]. Applied Mechanics Reviews, 2014, 66(2):024804. [32] RESHOTKO E. Laminar flow control-viscous simulation[R]. 1984. [33] MACK L M. Boundary-layer stability theory, in "Special course on stability and transition laminar flow"[R]. 1984. [34] BRASLOW A L. Review of the effect of distributed surface roughness on boundary-layer transition[J]. Wear, 1962, 5(1):77. [35] RIEDEL H, SITZMANN M. In-flight investigations of atmospheric turbulence[J]. Aerospace Science and Technology, 1998, 2(5):301-319. |