航空学报 > 2021, Vol. 42 Issue (7): 224429-224429   doi: 10.7527/S1000-6893.2020.24429

轴对称矢量喷管偏转效率的快速分析方法

张哲1, 王汉平1, 金文栋2, 张宝振1, 程梦文1   

  1. 1. 北京理工大学 宇航学院, 北京 100081;
    2. 中国航发沈阳发动机研究所, 沈阳 110015
  • 收稿日期:2020-06-19 修回日期:2020-08-18 发布日期:2020-12-08
  • 通讯作者: 王汉平 E-mail:whp161@bit.edu.cn

Fast analysis method of deflection efficiency for thrust axial-symmetric vectoring exhaust nozzle

ZHANG Zhe1, WANG Hanping1, JIN Wendong2, ZHANG Baozhen1, CHENG Mengwen1   

  1. 1. School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China;
    2. AECC Shenyang Engine Research Institute, Shenyang 110015, China
  • Received:2020-06-19 Revised:2020-08-18 Published:2020-12-08

摘要: 提出了一种骨架与A8滚子间柔性线线高副约束的简化算法,在该算法和模态综合法相结合的基础上构建了轴对称矢量喷管(AVEN)的刚柔耦合动力学模型,并遵循力的叠加原理和能量等效原则实现了热态气动载荷的等效简化和实时加载。基于该算法的仿真结果与实验误差约为4%,具有较高可信性;而与采用接触的模型对比仿真表明,二者精度相当,而前者更加稳定高效,能将单工况的计算时间从三天缩短到半小时;针对轴对称矢量喷管的某中间和加力典型工作状态,采用该算法模型对比分析了关键件柔性对轴对称矢量喷管偏转效率的贡献,最终发现:A9环是偏转效率的主要影响因素,占比超过94%。仿真结果表明,该算法模型本身就是一种效率与精度兼顾的稳定仿真方法,而A9环对偏转效率的影响占比表明,使用仅考虑A9环柔性的刚柔耦合模型将是轴对称矢量喷管偏转效率仿真的一种更加高效的快速估算方法。

关键词: 轴对称矢量喷管, 柔性线线高副, 刚柔耦合动力学, 偏转效率, 热态气动载荷

Abstract: A simplified algorithm of flexible curve-curve high constraint between the convergence skeleton and the A8 roller is proposed. Based on this algorithm and the Craig-Bampton modal synthesis method, a rigid-flexible coupled dynamics model of the Axisymmetric Vectoring Exhaust Nozzle (AVEN) is constructed. The equivalent simplification and real-time loading of the thermal aerodynamic loads are then realized according to the superposition principle and energy equivalence principle. The error between the calculation result based on this algorithm and the experiment is about 4%, showing high credibility. The comparison of simulation results between the model using this algorithm and the model using contacts show that the former was more stable and more efficient with the same precision. It could reduce the simulation cost of a single case from three days to half an hour. Aiming at the two typical states of AVEN, we compare the contributions of the flexibility of key components to the deflection efficiency. The results indicate that flexibility of A9 ring is the main influencing factor of the deflection efficiency, accounting for up to 94%. It is shown that the rigid-flexible coupling model only considering the flexibility of A9 ring would be a more efficient and rapid estimation method for the deflection efficiency simulation of AVEN.

Key words: axisymmetric vectoring exhaust nozzle, flexible curve-curve high constraint, rigid-flexible coupling dynamics, deflection efficiency, thermal aerodynamic load

中图分类号: