[1] |
MORRIS A J. Structural optimization by geometric programming[J]. International Journal of Solids & Structures, 1972, 8(7):847-864.
|
[2] |
SACKS J, WELCH W J, MITCHELL T J, et al. Design and analysis of computer experiments[J]. Statistical Science, 1989, 4(4):409-423.
|
[3] |
韩忠华. Kriging模型及代理优化算法研究进展[J]. 航空学报, 2016, 37(11):3197-3225. HAN Z H. Kriging surrogate model and its application to design optimization:Review of recent progress[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11):3197-3225(in Chinese).
|
[4] |
乔建领, 韩忠华, 宋文萍,等. 基于代理模型的高效全局低音爆优化设计方法[J]. 航空学报, 2018, 39(5):67-80. QIAO J L, HAN Z H, SONG W P, et al. An efficient surrogate-based global optimization for low boom design[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5):67-80(in Chinese).
|
[5] |
韩忠华,张瑜,许晨舟,等. 基于代理模型的大型民机机翼气动优化设计[J]. 航空学报, 2019, 40(1):522398. HAN Z H, ZHANG Y, XU C Z, et al. Aerodynamic optimization design of large civil aircraft wings using surrogate-based model[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1):522398(in Chinese).
|
[6] |
周旺仪,白俊强,乔磊,等. 变弯翼型与增升装置多目标气动优化设计研究[J]. 西北工业大学学报, 2018, 36(1):83-90. ZHOU W Y, BAI J Q, QIAO L, et al. A study of multi-objective aerodynamic optimization design for variable camber airfoils and high lift devices[J]. Journal of Northwestern Polytechnical University, 2018, 36(1):83-90(in Chinese).
|
[7] |
LIU B, GROUT V, NIKOLAEVA A. Efficient global optimization of actuator based on a surrogate model assisted hybrid algorithm[J]. IEEE Transactions on Industrial Electronics, 2018, 65(7):5712-5721.
|
[8] |
IULIANA E. Global optimization of benchmark aerodynamic cases using physics-based surrogate models[J]. Aerospace Science & Technology, 2017, 67:273-286.
|
[9] |
FORRESTER A I J, SÓBESTER A, KEANE A J. Engineering design via surrogate modeling:A practical guide[M]. Reston, VA:AIAA, 2008:77-106.
|
[10] |
LIU H, ONG Y S, CAI J. A survey of adaptive sampling for global metamodeling in support of simulation-based complex engineering design[J]. Structural and Multidisciplinary Optimization, 2018, 57(1):393-416.
|
[11] |
LI C N, BREZILLON J, GÖRTZ S. A hybrid approach for surrogate-based aerodynamic optimization with constraints[C]//2011 EUROGEN:Eccomas Thematic Conference, 2011:84-87.
|
[12] |
MACKMAN T J, ALLEN C B, GHOREYSHI M, et al. Comparison of adaptive sampling methods for generation of surrogate aerodynamic models[J]. AIAA Journal, 2013, 51(4):797-808.
|
[13] |
CHAUDHURI A, HAFTKA R T. Efficient global optimization with adaptive target setting[J]. AIAA Journal, 2014; 52(7):1573-1577.
|
[14] |
LIU H, ONG Y S, CAI J. A Survey of adaptive sampling for global metamodeling in support of simulation-based complex engineering design[J]. Structural and Multidisciplinary Optimization, 2017(6):1-24.
|
[15] |
KAMINSKY A L, WANG Y, PANT K, et al. Adaptive sampling techniques for surrogate modeling to create high-dimension aerodynamic loading response surfaces[C]//2018 Applied Aerodynamics Conference. Reston:AIAA, 2018
|
[16] |
CHENG G H, WANG G G. Trust region based MPS method for global optimization of high dimensional design problems:AIAA-2012-1590[R]. Reston:AIAA, 2012.
|
[17] |
GUO X S, LONG T,WU D, et al. RBF metamodel assisted global optimization method using particle swarm evolution and fuzzy clustering for sequential sampling:AIAA-2014-2305[R]. Reston:AIAA, 2014.
|
[18] |
QIU H, XU Y J, GAO L, et al. Multi-stage design space reduction and metamodeling optimization method based on self-organizing maps and fuzzy clustering[J]. Expert Systems with Applications, 2016, 46:180-195.
|
[19] |
SHI R H, LIU L, LONG T, et al. Sequential radial basis function using support vector machine for expensive design optimization[J]. AIAA Journal, 2017, 55(1):214-227.
|
[20] |
DONG H C, SONG B W, WANG P, et al. Surrogate-based optimization with clustering-based space-exploration for expensive multimodal problems[J]. Structural and Multidisciplinary Optimization, 2018, 57(4):1553-1577.
|
[21] |
王超,高正红,张伟,等. 自适应设计空间扩展的高效代理模型气动优化设计方法[J]. 航空学报,2018, 39(7):121745. WANG C, GAO Z H, ZHANG W, et al. Efficient surrogate-based aerodynamic design optimization method with adaptive design space expansion[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(7):121745(in Chinese).
|
[22] |
LI C N, PAN Q F. Adaptive optimization methodology based on Kriging modeling and a trust region method[J]. Chinese Journal of Aeronautics, 2019, 32(2):281-295.
|
[23] |
LI C N. A surrogate-based framework with hybrid refinement strategies for aerodynamic shape optimization[D]. Cologne:Library and Information Base of German Aerospace Center, 2013:37-52.
|
[24] |
BEZDEK J C, CHRISTIAN J. Fuzzy mathematics in pattern classification[D]. New York:Cornell University, 1973:142-147.
|
[25] |
WU D, LONG T, WANG Y, et al. A sequential maximin latin hypercube sampling method and its application to aircraft design:AIAA-2015-3095[R]. Reston:AIAA, 2015.
|
[26] |
JONES D R, SCHONLAU M, WELCH W J. Efficient global optimization of expensive black-box functions[J]. Journal of Global Optimization, 1998, 13(4):455-492.
|
[27] |
LI Y, LIU L, LONG T, et al. Metamodel-based global optimization using fuzzy clustering for design space reduction[J]. Chinese Journal of Mechanical Engineering, 2013, 26(5):928-939.
|
[28] |
PALACIOS F, ECONOMON T D, ALONSO J J. Large-scale aircraft design using SU2[C]//AIAA Aerospace Sciences Meeting. Reston:AIAA, 2015.
|
[29] |
QIN A K, HUANG V L, SUGANTHAN P N. Differential evolution algorithm with strategy adaptation for global numerical optimization[J]. IEEE Transactions on Evolutionary Computation, 2009, 13(2):398-417.
|