[1] |
张佳龙,闫建国,张普.基于反步推演法的多机编队队形重构控制[J].航空学报, 2019, 40(11):323177. ZHANG J L, YAN J G, ZHANG P. Multi-UAV formation forming reconfiguration control based on back-stepping method[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(11):323177(in Chinese).
|
[2] |
顾伟,汤俊,白亮,等.面向时间协同的多无人机队形变换最优效率模型[J].航空学报, 2019, 40(6):322599. GU W, TANG J, BAI L, et al. Time synergistic optimal efficiency model for formation transformation of multiple UAVs[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(6):322599(in Chinese).
|
[3] |
KUHN H W. The Hungarian method for the assignment problem[J]. Naval Research Logistics Quarterly, 1955, 2(1-2):83-97.
|
[4] |
HART P E, NILSSON N J, RAPHAEL B. A formal basis for the heuristic determination of minimum cost paths[J]. IEEE Transactions on Systems Science and Cybernetics, 1968, 4(2):100-107.
|
[5] |
GOLDENBERG M, FELNER A, STERN R, et al. Enhanced partial expansion A*[J]. Journal of Artificial Intelligence Research, 2014, 50(1):141-187.
|
[6] |
KUMAR R, HYLAND D C. Control law design using repeated trials[C]//American Control Conference. Piscataway, NJ:IEEE Press, 2001.
|
[7] |
SINGH L, FULLER J. Trajectory generation for a UAV in urban terrain, using nonlinear MPC[C]//American Control Conference. Piscataway, NJ:IEEE Press, 2001.
|
[8] |
MELLINGER D, KUSHLEYEV A, KUMAR V. Mixed-integer quadratic program trajectory generation for heterogeneous quadrotor teams[C]//2012 IEEE International Conference on Robotics and Automation. Piscataway, NJ:IEEE Press, 2012.
|
[9] |
DEITS R, TEDRAKE R L. Efficient mixed-integer planning for UAVs in cluttered environments[C]//2015 IEEE International Conference on Robotics and Automation (ICRA). Piscataway, NJ:IEEE Press, 2015:42-49.
|
[10] |
TURPIN M, MICHAEL N, KUMAR V. CAPT:Concurrent assignment and planning of trajectories for multiple robots[M]. California, CA:Sage Publications, Inc., 2014:98-112.
|
[11] |
TANG S, KUMAR V. A complete algorithm for generating safe trajectories for multi-robot teams[M]. Berlin:Robotics Research, 2018:599-616.
|
[12] |
TANG S, THOMAS J, KUMAR V. Hold Or take Optimal Plan (HOOP):A quadratic programming approach to multi-robot trajectory generation[J]. The International Journal of Robotics Research, 2018, 37(9), 1062-1084.
|
[13] |
QU S, XIA X, ZHANG J. Dynamics of discrete-time sliding-mode-control uncertain systems with a disturbance compensator[J]. IEEE Transactions on Industrial Electronics, 2014, 61(7):3502-3510.
|
[14] |
ZHOU W D, ZHU P X, WANG C L, et al. Position and attitude tracking control for a quadrotor UAV based on terminal sliding mode control[C]//201534th Chinese Control Conference (CCC). Piscataway, NJ:IEEE Press, 2015.
|
[15] |
JAYAKRISHNAN H J. Position and attitude control of a quadrotor UAV using super twisting sliding mode[J]. IFAC, 2016, 49(1):284-289.
|
[16] |
TIAN B L, LIU L H, LU H C, et al. Multivariable finite time attitude control for quadrotor UAV:Theory and experimentation[J]. IEEE Transactions on Industrial Electronics, 2018, 65(3):2567-2577.
|
[17] |
ZHANG X Y, ZONG Q, TIAN B L, et al. Continuous robust fault-tolerant control and vibration suppression for flexible spacecraft without angular velocity[J]. International Journal of Robust and Nonlinear Control, 2019, 29(12):3915-3935.
|
[18] |
TIAN B L, MA Y X, LIU L H, et al. Adaptive multivariable finite-time attitude control for quadrotor UAV[C]//201837th Chinese Control Conference (CCC). Piscataway, NJ:IEEE Press, 2018:9792-9796.
|
[19] |
马广富,朱庆华,王鹏宇,等.基于终端滑模的航天器自适应预设性能姿态跟踪控制[J].航空学报, 2018, 39(6):321763. MA G F, ZHU Q H, WANG P Y, et al. Spacecraft adaptive preset performance attitude tracking control based on terminal sliding model[J]. Acta Aeronautica et Astronautica Sinica,2018, 39(6):321763(in Chinese).
|
[20] |
张秀云,宗群,窦立谦,等.柔性航天器振动主动抑制及姿态控制[J].航空学报, 2019, 40(4):322503. ZHANG X Y, ZONG Q, DOU L Q, et al. Active vibration suppression and attitude control for flexible spacecraft[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(4):322503(in Chinese).
|
[21] |
YU X, LI P, ZHANG Y. The design of fixed-time observer and finite-time fault-tolerant control for hypersonic gliding vehicles[J]. IEEE Transactions on Industrial Electronics, 2017, 65(5):4135-4144.
|
[22] |
MELLINGER D, KUMAR V. Minimum snap trajectory generation and control for quadrotors[C]//2011 IEEE International Conference on Robotics and Automation. Piscataway, NJ:IEEE Press, 2011:2520-2525.
|
[23] |
MUELLER M W, HEHN M, D'ANDREA R. A computationally efficient motion primitive for quadrocopter trajectory generation[J]. IEEE Transactions on Robotics, 2015, 31(6):1294-1310.
|
[24] |
BHAT S P, BERNSTEIN D S. Continuous finite-time stabilization of the translational and rotational double integrators[J]. IEEE Transactions on Automatic Control, 1998, 43(5):678-682.
|
[25] |
TIAN B, LU H, ZUO Z, et al. Multivariable finite-time output feedback trajectory tracking control of quadrotor helicopters[J]. International Journal of Robust and Nonlinear Control, 2018, 28(1):281-295.
|
[26] |
GAZEBO. Gazebo Tutorials[EB/OL].(2014-01-01)[2019-09-02]. http://gazebosim.org/tutorials.
|