1 |
CHEN Y B, LUO G C, MEI Y S, et al. UAV path planning using artificial potential field method updated by optimal control theory[J]. International Journal of Systems Science, 2016, 47(6): 1407-1420.
|
2 |
彭闪, 殷苑, 田峰, 等. 无人机航迹规划算法综述[J]. 数字技术与应用, 2022, 40(4): 77-79.
|
|
PENG S, YIN Y, TIAN F, et al. Overview of UAV path planning algorithms[J]. Digital Technology & Application, 2022, 40(4): 77-79 (in Chinese).
|
3 |
徐文钰, 敖海跃, 刘燕斌. 基于鸽群优化算法的多无人机局部航迹重规划[J]. 战术导弹技术, 2022(1): 46-52.
|
|
XU W Y, AO H Y, LIU Y B. Local path re-planning of multi-UAVs based on pigeon-inspired optimization[J]. Tactical Missile Technology, 2022(1): 46-52 (in Chinese).
|
4 |
张宏宏, 甘旭升, 毛亿, 等. 无人机避障算法综述[J]. 航空兵器, 2021, 28(5): 53-63.
|
|
ZHANG H H, GAN X S, MAO Y, et al. Review of UAV obstacle avoidance algorithms[J]. Aero Weaponry, 2021, 28(5): 53-63 (in Chinese).
|
5 |
刘祥, 叶晓明, 王泉斌, 等. 无人水面艇局部路径规划算法研究综述[J]. 中国舰船研究, 2021, 16(S1): 1-10.
|
|
LIU X, YE X M, WANG Q B, et al. Review on the research of local path planning algorithms for unmanned surface vehicles[J]. Chinese Journal of Ship Research, 2021, 16(S1): 1-10 (in Chinese).
|
6 |
JIN Z, YAN B, YE R. The flight navigation planning based on potential field ant colony algorithm[C]∥Proceedings of the 2018 International Conference on Advanced Control, Automation and Artificial Intelligence (ACAAI 2018). Paris: Atlantis Press, 2018: 200-204.
|
7 |
李二超, 王玉华. 改进人工势场法的移动机器人避障轨迹研究[J]. 计算机工程与应用, 2022, 58(6): 296-304.
|
|
LI E C, WANG Y H. Research on obstacle avoidance trajectory of mobile robot based on improved artificial potential field[J]. Computer Engineering and Applications, 2022, 58(6): 296-304 (in Chinese).
|
8 |
张建英, 刘暾. 基于人工势场法的移动机器人最优路径规划[J]. 航空学报, 2007, 28(S1): 183-188.
|
|
ZHANG J Y, LIU T. Optimized path planning of mobile robot based on artificial potential field[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(S1): 183-188 (in Chinese).
|
9 |
魏瑞轩, 周凯. 面向位置环境的无人机障碍规避制导率设计[J]. 系统工程与电子技术, 2015, 25(9): 2096-2101.
|
|
WEI R X, ZHOU K. Design of UAV Obstacle avoidance guidance rate oriented to location environment[J]. Systems Engineering and Electronic Technology, 2015, 25(9): 2096-2101 (in Chinese).
|
10 |
宋宇, 王志明. 面向无人机三维航迹规划的改进粒子群优化算法[J]. 传感器与微系统, 2019, 38(3): 144-146.
|
|
SONG Y, WANG Z M. Improved PSO algorithm for UAV 3D track planning[J]. Transducer and Microsystem Technologies, 2019, 38(3): 144-146 (in Chinese).
|
11 |
黄书召, 田军委, 乔路, 等. 基于改进遗传算法的无人机路径规划[J]. 计算机应用, 2021, 41(2): 390-397.
|
|
HUANG S Z, TIAN J W, QIAO L, et al. Unmanned aerial vehicle path planning based on improved genetic algorithm[J]. Journal of Computer Applications, 2021, 41(2): 390-397 (in Chinese).
|
12 |
徐鹏. 基于模拟退火算法的机器人路径规划与研究[J]. 科技广场, 2011(1): 42-44.
|
|
XU P. Planning and research of robot path based on simulated annealing path[J]. Science Mosaic, 2011(1): 42-44 (in Chinese).
|
13 |
FIORINI P, SHILLER Z. Motion planning in dynamic environments using the relative velocity paradigm[C]∥ Proceedings IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2002: 560-565.
|
14 |
黄永龙, 仲训昱. 基于改进速度障碍法的多机器人避碰规划算法[J]. 计算机工程与应用, 2012, 48(32): 47-51, 207.
|
|
HUANG Y L, ZHONG X Y. Improved velocity obstacles-based collision avoidance algorithm for multiple mobile robots[J]. Computer Engineering and Applications, 2012, 48(32): 47-51, 207 (in Chinese).
|
15 |
DURAND N, BARNIER N. Does ATM need centralized coordination? Autonomous conflict resolution analysis in a constrained speed environment[J]. Air Traffic Control Quarterly, 2015, 23(4): 325-346.
|
16 |
HAN S C, BANG H, YOO C S. Proportional navigation-based collision avoidance for UAVs[J].International Journal of Control, Automation and Systems, 2009, 7(4): 553-565.
|
17 |
王泽坤, 吴明功, 温祥西. 基于速度障碍法的飞行冲突解脱与恢复策略[J]. 北京航空航天大学, 2019, 45(7): 1294-1302.
|
|
WANG Z K, WU M G, WEN X X. Flight conflict relief and recovery strategy based on speed obstacle method [J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(7): 1294-1302 (in Chinese).
|
18 |
张宏宏, 甘旭升, 李昂, 等. 基于速度障碍法的无人机避障与航迹恢复策略[J]. 系统工程与电子技术, 2020, 42(8): 1759-1767.
|
|
ZHANG H H, GAN X S, LI A, et al. UAV obstacle avoidance and track recovery strategy based on velocity obstacle method[J]. Systems Engineering and Electronics, 2020, 42(8): 1759-1767 (in Chinese).
|
19 |
杨秀霞, 华伟, 孟启源. 基于有限时间速度障碍法的UAV避障研究[J]. 弹箭与制导学报, 2018, 38(5): 19-22, 26.
|
|
YANG X X, HUA W, MENG Q Y. Study on UAV obstacle avoidance based on finite time velocity obstruction method[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2018, 38(5): 19-22, 26 (in Chinese).
|
20 |
许文瑶, 贺继林. 基于改进速度障碍法的水下机器人动态避障[J]. 电光与控制, 2021, 28(12): 86-90.
|
|
XU W Y, HE J L. Dynamic obstacle avoidance for ROV based on improved velocity obstacle method[J]. Electronics Optics & Control, 2021, 28(12): 86-90 (in Chinese).
|
21 |
杨秀霞, 周硙硙, 张毅. 三维动态不确定UAV自主避障算法[J]. 电光与控制, 2017, 24(9): 1-5.
|
|
YANG X X, ZHOU W W, ZHANG Y. A 3-D dynamic autonomous obstacle avoidance algorithm for UAVs[J]. Electronics Optics & Control, 2017, 24(9): 1-5 (in Chinese).
|
22 |
SNAPE J, VAN DEN BERG J, GUY S J, et al. The hybrid reciprocal velocity obstacle[J]. IEEE Transactions on Robotics, 2011, 27(4): 696-706.
|
23 |
CHAKRAVARTHY A, GHOSE D. Generalization of the collision cone approach for motion safety in 3-D environments[J]. Autonomous Robots, 2012, 32(3): 243-266.
|
24 |
杨健. 无人机集群系统空域冲突消解方法研究[D]. 长沙: 国防科学技术大学, 2016: 11-16.
|
|
YANG J. Study on the airspace conflict resolution problem of unmanned aerial vehicle swarm systems[D]. Changsha: National University of Defense Technology, 2016: 11-16 (in Chinese).
|