赵波, 姜燕, 别文博
收稿日期:
2019-11-26
修回日期:
2020-03-30
发布日期:
2020-03-26
通讯作者:
赵波
E-mail:zhaob@hpu.edu.cn
基金资助:
ZHAO Bo, JIANG Yan, BIE Wenbo
Received:
2019-11-26
Revised:
2020-03-30
Published:
2020-03-26
Supported by:
摘要: 超声滚压加工是一种复合特种加工技术,其综合了传统滚压和超声加工的材料去除方式,在增加残余应力提高表面完整性、抗疲劳、抗腐蚀、耐磨损等方面具有显著的优势。自该技术应用至今,国内外学者做了大量有关超声滚压工艺及机理方面的研究,并在多种重要金属材料及关键零部件中应用。本文首先总结了国内外滚压装置的发展现状;其次论述了超声滚压机理研究的主要方法(理论法、有限元法和实验法)研究进展,指出以上3种方法的优缺点及待解决问题;随后总结了超声滚压对表面完整性(包括微观结构、表面形貌、微观硬度、残余应力)的影响规律,超声滚压对提高抗疲劳特性及其他性能影响,并指出超声滚压目前存在的不足及尚待解决的问题;最后就超声滚压技术进一步研究和发展方向进行展望,从而为曲面的超声滚压制造提供一定的参考。
中图分类号:
赵波, 姜燕, 别文博. 超声滚压技术在表面强化中的研究与应用进展[J]. 航空学报, 2020, 41(10): 23685-023685.
ZHAO Bo, JIANG Yan, BIE Wenbo. Ultrasonic rolling technology in surface strengthening: Progress in research and applications[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(10): 23685-023685.
[1] 赵婧, 夏伟, 李风雷, 等. 滚压表面强化机理的研究现状与进展[J].工具技术, 2010, 44(11):3-8. ZHAO J, XIA W, LI F L, et al. Research status and developing tendency of burnishing mechanism[J].Tool Engineering, 2010, 44(11):3-8(in Chinese). [2] 李鹏涛, 赵波, 赵重阳,等. 超声局部共振系统设计与试验研究[J].兵工学报, 2019, 40(8):1747-1755. LI P T, ZHAO B, ZHAO C Y, et al. Design and experimental study of ultrasonic local resonance system[J].Acta Armamentarii 2019, 40(8):1747-1755(in Chinese). [3] SHAMOTO E, SUZUKI N, MORIWAKI T, et al. De-velopment of ultrasonic elliptical vibration controller for elliptical vibration cutting[J].CIRP Annals-Manufacturing Technology, 2002, 51(1):327-330. [4] IBRAHIM A A, RABBO S M A, El-AXIR M H, et al. Center rest balls burnishing parameters adaptation of steel components using fuzzy logic[J].Journal of Materials Processing Technology, 2009, 209(5):2428-2435. [5] JUIJERM P, ALTENBERGE R. Fatigue performance enhancement of steels using mechanical surface treat-ments[J].Journal of Metals, 2017, 17(1):59-65. [6] TIAN Y, SHIN Y C. Laser-assisted burnishing of met-als[J].International Journal of Machine Tools and Manufacture, 2007, 47(1):14-22. [7] 鲁金忠, 季仕杰, 吴刘军, 等. 激光冲击-超声滚压复合工艺对AZ91D镁合金力学性能的影响[J]. 吉林大学学报(工学版), 2020,50(4):1301-1309. LU J Z, JI S J, WU L J, et al. Effect of laser shock peening and ultrasound surface rolling combined processes on mechanical properties of AZ91D Mg alloy[J]. Journal of Jilin University (Engineering and Technology Edition), 2020,50(4):1301-1309(in Chinese). [8] 苟磊, 马玉娥, 杜永, 等. 7050凹槽铝板激光冲击强化残余应力分布与疲劳寿命[J].航空学报, 2019, 40(12):423096. GOU L, MA Y E, DU Y, et al. Residual stress profile and fatigue of 7075 aluminum plate with groove under laser shot peening[J].Acta Aeronautica et Astronautica Sinica, 2019, 40(12):423096(in Chinese). [9] 王海波. 304不锈钢的电脉冲辅助车削与声电耦合表面加工研究[D]. 北京:清华大学, 2016:26-34. WANG H B. Research on the electropulsing assisted turning and ultrasonic-electropulsing coupling surface process for the 304 stainless steel[D]. Beijing:Tsinghua University, 2016:26-34(in Chinese). [10] 赵波, 别文博, 王晓博, 等. 纵-扭复合超声钻削TC4钛合金振动系统设计与试验[J].航空学报, 2020, 41(1):423207. ZHAO B, BIE W B, WANG X B, et al. Design and experimental investigation on vibration system of longitudinal-torsional ultrasonic drilling TC4 titanium alloy[J].Acta Aeronautica et Astronautica Sinica, 2020, 41(1):423207(in Chinese). [11] 白音胡, 柴铭丽, 杨学军, 等. 超声滚压处理提高30CrNiMo8钢疲劳性能可行性的研究[J].制造技术与机床, 2019(10):88-92. BAI Y H, CHAI M L, YANG X J, et al. Study on feasibility of improving fatigue properties of 30CrNiMo8 steel by ultrasonic rolling process[J].Technology and Manufacture, 2019(10):88-92(in Chinese). [12] 刘战强, 贺蒙, 赵建. 机械加工强化机理与工艺技术研究进展[J].中国机械工程, 2015, 26(3):403-413. LIU Z Q, HE M, ZHAO J. Mechanical machining strengthening mechanism and material processing technology-a review[J].China Mechanical Engineering. 2015, 26(3):403-413(in Chinese). [13] 别文博, 赵波, 王晓博, 等. 超声加工在齿轮抗疲劳制造中的研究综述与展望[J].表面技术, 2018, 47(7):47-63. BIE W B, ZHAO B, WANG X B, et al. Overview of ex-pectation on gear anti-fatigue manufacture by ultrasonic-assisted machining[J].Surface Technology, 2018, 47(7):47-63(in Chinese). [14] 郑建新, 罗傲梅, 刘传绍. 超声表面强化技术的研究进展[J].制造技术与机床, 2012(10):32-36. ZHENG J X,LUO A M,LIU C S. Development of ultrasonic surface enhancement technique[J].Manufacturing Technology and Machine Tool, 2012(10):32-36(in Chinese). [15] 宋德玉, 高文, 赵振业, 等. 内螺纹滚压强化对超高强度钢疲劳性能的影响[J].航空学报, 1995, 16(5):619-622. SONG D Y, GAO W, ZHAO Z Y, et al. Effect of female screw rolling strengthening on fatigue property of 300m superhigh strength steel[J].Acta Aeronautica et Astronautica Sinica, 1995, 16(5):619-622(in Chinese). [16] 李瑞锋, 张德远, 程明龙. 高强钢大直径内螺纹超声滚压强化技术[J].中国表面工程, 2014, 27(2):63-68. LI R F, ZHANG D Y, CHENG M L. High-strength steel large-diameter internal thread strengthening by ul-trasonic burning technology[J].China Surface Engi-neering, 2014, 27(2):63-68(in Chinese). [17] CHENG M L, ZHANG D Y, CHEN H W, et al. Devel-opment of ultrasonic thread root rolling technology for prolonging the fatigue performance of high strength thread[J].Journal of Materials Processing Technology, 2014, 214(11):2395-2401. [18] SHIOU F J, CIOU H S. Ultra-precision surface finish of the hardened stainless mold steel using vibration-assisted ball polishing process[J].International Journal of Machine Tools and Manufacture, 2008, 48(7-8):721-732. [19] YU T B, YANG X Z, AN J B, et al. Material removal mechanism of two-dimensional ultrasonic vibration assisted polishing Inconel718 nickel-based alloy[J].The International Journal of Advanced Manufacturing Technology, 2018, 96(1-4):657-667. [20] LIU D F, YAN R M, CHEN T. Material removal model of ultrasonic elliptical vibration-assisted chemical mechanical polishing for hard and brittle materials[J].The International Journal of Advanced Manufacturing Technology, 2017, 92(1-4):81-89. [21] MACHANG H, TSUNG T T, YANG Y C, et al. Nanoparticle suspension preparation using the arc spray nanoparticle synthesis system combined with ultrasonic vibration and rotating electrode[J].International Journal of Advanced Manufacturing Technology, 2005, 26(5-6):552-558. [22] MAXIMOV J T. Spherical mandrelling method imple-mentation on conventional machine tools[J].International Journal of Machine Tools and Manufacture, 2002, 42(12):1315-1325. [23] MAXIMOV J T, KUZMANOV T V, DUNCHEVA G V, et al. Spherical motion burnishing implemented on lathes[J].International Journal of Machine Tools and Manufacture, 2009, 49(11):824-831. [24] MAXIMOV J T, ANCHEV A P. Modelling of residual stress field in spherical mandrelling process[J].Interna-tional Journal of Machine Tools and Manufacture, 2003, 43(12):1241-1251. [25] MAXIMOV J T, KALCHEV G M. Modelling of spher-ical mandrelling manufacturing resistance[J].Interna-tional Journal of Machine Tools and Manufacture, 2004, 44(1):95-100. [26] SHIOU F J, CHEN C H. Freeform surface finish of plastic injection mold by using ball-burnishing process[J].Journal of Materials Processing Technology, 2003, 140(1-3):248-254. [27] JAIN N K. Review of gear finishing processes[J].Comprehensive Materials Finishing, 2017(1):93-120. [28] 陈文蕊. 基于超声深滚理论齿轮齿面光整强化研究[D]. 大连:大连理工大学, 2012:11-17. CHEN W R. Research of finishing and improvement of gear properties by ultrasonic surface rolling processing[D]. Dalian:Dalian University of Technology, 2012:11-17(in Chinese). [29] 赵慧玲. 齿轮齿面超声挤压强化技术研究[D]. 北京:北京交通大学, 2018:27-37. ZHAO H L. Research on ultrasonic extrusion strengthening technology of gear tooth surface[D]. Beijing:Beijing Jiaotong University, 2018:27-37(in Chinese). [30] LACALLE L N L, LAMIKIZ A, MUOA J, et al. Quality improvement of ball-end milled sculptured surfaces by ball burnishing[J].International Journal of Machine Tools and Manufacture, 2005, 45(15):1659-1668. [31] SHIOU F J, HSU C C. Surface finishing of hardened and tempered stainless tool steel using sequential ball grinding, ball burnishing and ball polishing processes on a machining centre[J].Journal of Materials Processing Technology, 2008, 205(1-3):249-258. [32] EL-TAYEB N S M, LOW K O, BREVERN P V. Influ-ence of roller burnishing contact width and burnishing orientation on surface quality and tribological behaviour of aluminium 6061[J].Journal of Materials Processing Technology, 2007, 186(1-3):272-278. [33] TEIMOURI R, AMINI S. A comprehensive optimization of ultrasonic burnishing process regarding energy efficiency and workpiece quality[J].Surface and Coatings Technology, 2019, 375:229-242 [34] TEIMOURI R, AMINI S, ALIREZA B B. Evaluation of optimized surface properties and residual stress in ultrasonic assisted ball burnishing of AA6061-T6[J].Measurement, 2018(116):129-139. [35] WANG H B, YANG X H, LI H, et al. Enhanced fatigue performance and surface mechanical properties of AISI 304 stainless steel induced by electropulsing-assisted ultrasonic surface rolling process[J].Journal of Materials Research, 2018, 33(22):1-14. [36] 王燕礼, 朱有利, 杨嘉勤. 滚压强化技术及在航空领域研究应用进展[J].航空制造技术, 2018, 61(5):75-83. WANG Y L, ZHU Y L, YANG J Q. Rolling reinforcement technology and its research application progress in aviation field[J].Aeronautical Manufacturing Technology, 2018, 61(5):75-83(in Chinese). [37] BACKER V, KLOCKE F, WEGNER H, et al. Analysis of the deep rolling process on turbine blades using the FEM/BEM-coupling[J].IOP Conference Series:Materials Science and Engineering, 2010(10):012134. [38] PREVEY P S, HORNBACH D J, JACOBS T L, et al. Improved damage tolerance in titanium alloy fan blades with low plasticity burnishing[C]//International Surface Engineering Conference, 2002. [39] 张德远, 刘逸航, 耿大喜, 等. 超声加工技术的研究进展[J].电加工与模具, 2019(5):1-19. ZHANG D Y, LIU Y H, GENG D X, et al. The research progress of ultrasonic machining technology[J].Electromachining and Mould, 2019(5):1-19(in Chinese). [40] 吕宗敏. 超声冲击对转向架焊接十字接头表层组织及超高周疲劳性能的影响[D]. 南昌:华东交通大学, 2016:20-23. LV Z M. Effect of ultrasonic impact on the surface microstructrue and very high cycle fatigue properties of welded cross joints for train bogie[D]. Nanchang:East China Jiaotong University, 2016:20-23(in Chinese). [41] 任学冲, 陈利钦, 刘鑫贵, 等. 表面超声滚压处理对高速列车车轴钢疲劳性能的影响[J].材料工程, 2015, 43(12):1-5. REN X C, CHEN L Q, LIU X G, et al. Effects of surface ultrasonic rolling processing on fatigue properties of axle steel used on high speed train[J].Journal of Materials Engineering, 2015, 43(12):1-5(in Chinese). [42] 胡君杰. 超声滚压对60 Si2CrVAT弹簧钢表面完整性和疲劳性能的影响[D]. 贵阳:贵州大学, 2017:21-64. HU J J. Effect of surface ultrasonic rolling processing on surface integrity and fatigue properties of 60 Si2CrVAT spring steel[D]. Guiyang:Guizhou University, 2017:21-64(in Chinese). [43] LIU C S, LIU D X, ZHANG X H, et al. On the influence of ultrasonic surface rolling process on surface integrity and fatigue performance of Ti-6Al-4V alloy[J].Surface and Coatings Technology, 2019, 370:24-34. [44] LUO H, LIU J, WANG L, et al. Study of the mechanism of the burnishing process with cylindrical polycrystalline diamond tools[J].Journal of Materials Processing Technology, 2006, 180(1-3):9-16. [45] 赵建, 王兵, 刘战强. 旋转超声滚压加工中的滚压力与滚压深度及表面形貌研究[J].兵工学报, 2016, 37(4):696-704. ZHAO J, WANG B, LIU Z Q. The investigation into burnishing force,burnishing depth and surface morphology in rotary ultrasonic burnishing[J].Acta Armamentarii, 2016, 37(4):696-704(in Chinese). [46] HIEGEMANN L, WEDDELING C, KHALIFA N B, et al. Analytical prediction of roughness after ball burnish-ing of thermally coated surfaces[J].Procedia Engineering, 2014(81):1921-1926. [47] KORZYNSKI M. Modeling and experimental validation of the force-surface roughness relation for smoothing burnishing with a spherical tool[J].International Journal of Machine Tools and Manufacture, 2007, 47(12-13):1956-1964. [48] HIEGEMANN L, WEDDELING C, KHALIFA N B, et al. Prediction of roughness after ball burnishing of thermally coated surfaces[J].Materials Processing Technology, 2015, 217(1):193-201. [49] TEIMOURI R, AMINI S, ASHRAFIFI H. An analytical model of burnishing forces using slab method[J].Proceedings of the Institution of Mechanical Engineers, 2019, 233(3):630-642. [50] TEIMOURI R, AMINI S. Analytical modeling of ultrasonic burnishing process:Evaluation of active forces[J].Measurement, 2019, 131:654-663. [51] TABATABAEI S M K, BEHBAHANI S, MIRIAN S M. Analysis of ultrasonic assisted machining (UAM) on regenerative chatter in turning[J].Journal of Materials Processing Technology, 2013, 213(3):418-425. [52] 徐振国. 金属平面滚压塑性精密加工的研究[D]. 长春:吉林大学, 2006:16-31. XU Z G. Study on plastic and precise roller-burnishing process for metal plane[D]. Changchun:Jilin University, 2006:16-31(in Chinese). [53] HAN S, LEE T, SHIN B. Residual stress relaxation of welded steel components under cyclic load[J].Steel Re-search, 2002, 73(9):414-420. [54] ZHUANG W Z, HALFORD G R. Investigation of resi-dual stress relaxation under cyclic load[J].International Journal of Fatigue, 2001, 23:31-37. [55] LIU Y, ZHAO X, WANG D. Effective FE model to predict surface layer characteristics of ultrasonic surface rolling with experimental validation[J].Material Science and Technology, 2014, 30(6):627-636. [56] 徐红玉, 刘立波, 崔凤奎. 风电轴承套圈超声滚压强化残余应力形成规律分析[J].塑性工程学报, 2019, 26(5):125-132. XU H Y, LIU L B, CUI F K. Analysis of residual stress formation in ultrasonic rolling strengthening of wind power bearing rings[J].Journal of Plasticity Engineering, 2019, 26(5):125-132(in Chinese). [57] 张存鹰, 赵波. 超声振动辅助加工表面微结构及其特性研究进展[J].表面技术, 2019, 48(5):271-286. ZHANG C Y, ZHAO B. Research progress of properties of surface micro-structure in ultrasonic vibration assisted machining[J].Surface Technology, 2019, 48(5):271-286(in Chinese). [58] 毛淼东. 超声滚压对Ti-6Al-4V合金高低周疲劳性能影响研究[D]. 广州:华东理工大学, 2018:22-26. MAO M D. Study on the effect of ultrasonic deep rolling on the low- and high-cycle fatigue behavior of Ti-6al-4v[D]. Guangzhou:East China University of Science and Technology, 2018:22-26(in Chinese). [59] BOUZID W, TSOUMAREV O, SA K. An investigation of surface roughness of burnished AISI 1042 steel[J].International Journal of Advanced Manufacturing Tech-nology, 2004, 24(1-2):120-125. [60] SASA R, BRANKOT, PETAR M T. Modelling of the ball burnishing process with a high-stiffness tool[J]. The International Journal of Advanced Manufacturing Technology, 2015, 81(9-12):1509-1518. [61] BOUGHARRIOU A, SA W B, SA K. Prediction of sur-face characteristics obtained by burnishing[J].The In-ternational Journal of Advanced Manufacturing Tech-nology, 2010, 51(1-4):205-215. [62] LI F L, WEI X, ZHAO Y Z. Analytical prediction and experimental verification of surface roughness during the burnishing process[J].International Journal of Machine Tools and Manufacture, 2012, 62:67-75. [63] GHARBI F, SGHAIER S, HAMDI H, et al. Ductility improvement of aluminum 1050A rolled sheet by a newly designed ball burnishing tool device[J].International Journal of Advanced Manufacturing Technology, 2012, 60(1-4):87-99. [64] BOUGHARRIOU A, BOUZID W, SA K. Analytical modeling of surface profile in turning and burnishing[J].The International Journal of Advanced Manufacturing Technology, 2014, 75(1-4):547-558. [65] ESME U, SAGBAS A, KAHRAMAN F, et al. Use of artificial neural networks in ball burnishing process for the prediction of surface roughness of AA 7075 aluminum alloy[J].Material in Technology, 2008, 42(5):215-219. [66] BASAK H, GOKTAS H H. Burnishing process on al-alloy and optimization of surface roughness and surface hardness by fuzzy logic[J].Materials and Design, 2009, 30(4):1275-1281. [67] UGUR E, KULEKCI M K, OZGUN S, et al. Predictive modeling of ball burnishing process using regression analysis and neural network[J].Materials Testing, 2013, 55(3):187-192. [68] JOHN M R S, VINAYAGAM B K. Optimization of nonlinear characteristics of ball burnishing process using Sugeno fuzzy neural system[J].Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2014, 36(1):101-109. [69] SARHAN A A D, EL-TAYEB N S M. Investigating the surface quality of the burnished brass C3605-fuzzy rule-based approach[J].The International Journal of Advanced Manufacturing Technology, 2014, 71(5-8):1143-1150. [70] 史磊, 杨光, 林文俊. 前缘侵蚀对风扇转子叶片气动特性的影响机理[J].航空学报, 2019, 40(10):123007. SHI L, YANG G, LIN W J. Influence mechanism of leading-edge erosion on aerodynamic performance of fan rotor blade[J].Acta Aeronautica et Astronautica Sinica, 2019, 40(10):123007(in Chinese). [71] 王生武, 温爱玲, 邴世君, 等. 滚压强化的残余应力的数值仿真及工艺分析[J].计算力学学报, 2008, 25(S1):113-118. WANG S W, WEN A L, BING S J, et al. FE simulation of residual stresses by surface rolling and analysis of rolling process[J].Chinese Journal of Computational Mechanics, 25(S1):113-118(in Chinese). [72] JIANG Y Y, XU B Q, SEHITOGLU H. Three-dimensional elastic-plastic stress analysis of rolling contact[J].Journal of Tribology, 2002, 124(4):699-708. [73] 李卫国. 孔滚压光整强化机理及残余应力分析研究[D]. 太原:中北大学, 2019:41-61. LI W G. Deep hole rolling lightening strengthening mechanism and residual stress analysis[D]. Taiyuan:North University of China, 2019:41-61(in Chinese). [74] ZHUANG W, WICKS B. Multipass low-plasticity bur-nishing induced residual stresses:three-dimensional elastic-plastic finite element modelling[J].Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2004, 218(6):663-668. [75] YEN Y C, SARTKULVANICH P, ALTAN T. Finite element modeling of roller burnishing process[J].CIRP Annals-Manufacturing Technology, 2005, 54(1):237-240. [76] MAXIMOV J T, DUNCHEVA G V. Finite element analysis and optimization of spherical motion burnishing of low-alloy steel[J].Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2012, 226(1):161-176. [77] LIU Y, WANG L J, WANG D P. Finite element modeling of ultrasonic surface rolling process[J].Journal of Materials Processing Tech, 2011, 211(12):2106-2113. [78] SAYAHI M, SGHAIER S, BELHADJSALAH H. Finite element analysis of ball burnishing process:comparisons between numerical results and experiments[J].International Journal of Advanced Manufacturing Technology, 2013, 67(5-8):1665-1673. [79] BALLAND P, TABOUROT L, DEGRE F, et al. An in-vestigation of the mechanics of roller burnishing through finite element simulation and experiments[J].International Journal of Machine Tools and Manufacture, 2013, 65:29-36. [80] BOUZID S W, SAI K. Finite element modeling of bur-nishing of AISI 1042 steel[J].International Journal of Advanced Manufacturing Technology, 2005, 25(5-6):460-465. [81] BALLAND P, TABOUROT L, DEGRE F, et al. Me-chanics of the burnishing process[J].Precision Engineering, 2013, 37(1):129-134. [82] MOHAMMADI F, SEDAGHATI R, BONAKDAR A. Finite element analysis and design optimization of low plasticity burnishing process[J].The International Journal of Advanced Manufacturing Technology, 2014, 70(5-8):1337-1354. [83] 田硕, 尚建勤, 盖鹏涛, 等. 带筋整体壁板预应力喷丸成形数值模拟及变形预测[J].航空学报, 2019, 40(10):422847. TIAN S, SHANG J Q, GAI P T, et al. Numerical simulation and deformation prediction of stress peen forming for integrally-stiff-ened panels[J].Acta Aeronautica et Astronautica Sinica, 2019, 40(10):422847(in Chinese). [84] RODRíGUEZ A, LóPEZ DE LACALLE L N, CELAYA A, et al. Surface improvement of shafts by the deep ball-burnishing technique[J].Surface and Coatings Technology, 2012, 206(11-12):2817-2824. [85] EL-TAWEEL T A, EL-AXIR M H. Analysis and opti-mization of the ball burnishing process through the Taguchi technique[J].International Journal of Advanced Manufacturing Technology, 2009, 41(3-4):301-310. [86] GHARBI F, SGHAIER S, AL-FADHALAH K J, et al. Effect of ball burnishing process on the surface quality and microstructure properties of AISI 1010 steel plates[J].Journal of Materials Engineering and Performance, 2011, 20(6):903-910. [87] RAO D S, HEBBAR H S, KOMARAIAH M. Surface hardening of high-strength low alloy steels (HSLA) dual-phase steels by ball burnishing using factorial de-sign[J].Materials and Manufacturing Processes, 2007, 22(7-8):825-829. [88] SHREEHAH T A A. Developing and investigating of elastic ball burnishing tool[J].The International Journal of Advanced Manufacturing Technology, 2008, 36(3-4):270-279. [89] SAGBAS A. Analysis and optimization of surface roughness in the ball burnishing process using response surface methodology and desirabilty function[J].Advances in Engineering Software, 2011, 42(11):992-998. [90] 杜旭, 张腾, 何宇廷, 等. 孔冷挤压有限元仿真中的铰削分界面位置确定方法[J].航空学报, 2019, 40(4):422674. DU X, ZHANG T, HE Y T, et al. Determining position of reaming interface in cold expansion on FEM simulation[J].Acta Aeronautica et Astronautica Sinica, 2019, 40(4):422674(in Chinese). [91] LIU C S,LIU D X,ZHANG X H, et al. Effect of the ultrasonic surface rolling process on the fretting fatigue behavior of Ti-6Al-4V alloy[J].Materials, 2017, 10(7):833. [92] DAAVARI M, VANINI S A S. Corrosion fatigue en-hancement of welded steel pipes by ultrasonic impact treatment[J].Materials Letter, 2015, 139:462-466. [93] WANG H B, SONG G L, TANG G Y. Evolution of surface mechanical properties and microstructure of Ti6Al4V alloy induced by electropulsing-assisted ultrasonic sur-face rolling process[J].Journal of Alloys and Compounds, 2016, 681:146-156. [94] YE C, TELANG A, GILL A S, et al. Gradient nano-structure and residual stresses induced by Ultrasonic Nano-crystal Surface Modification in 304 austenitic stainless steel for high strength and high ductility[J].Materials Science and Engineering:A, 2014, 613:274-288. [95] 张飞, 赵运才. 超声表面滚压处理对45钢摩擦学性能的影响及机理[J].机械工程材料, 2017, 41(8):44-48. ZHANG F, ZHAO Y C. Influence of ultrasonic surface rolling processing on tribological performance of 45 steel and its mechanism[J].Materials for Mechanical Engineering, 2017, 41(8):44-48(in Chinese). [96] 王婷, 王东坡, 刘刚, 等. 40Cr超声表面滚压加工纳米化[J].机械工程学报, 2009, 45(5):177-183. WANG T, WANG D P, LIU G, et al. 40Cr nano-crystallization by ultrasonic surface rolling extrusion processing[J].Journal of Mechanical Engineering, 2009, 45(5):177-183(in Chinese). [97] AMANOV A, UMAROV R. The effects of ultrasonic nanocrystal surface modification temperature on the mechanical properties and fretting wear resistance of inconel 690 alloy[J].Applied Surface Science, 2018, 441:515-529. [98] 李凤琴, 赵波. 超声加工滚压力对钛合金表层特性的影响[J].表面技术, 2019, 48(10):34-40. LI F Q, ZHAO B. Effect of ultrasonic processing burnishing pressure on titanium alloy surface properties[J].Surface Technology, 2019, 48(10):34-40(in Chinese). [99] 张飞, 上官绪超. 表面超声滚压处理对AISI304不锈钢疲劳性能的影响[J].热加工工艺, 2017, 46(16):144-148. ZHANG F, SHANGGUAN X C. Effect of surface ultrasonic rolling processing on fatigue properties of ai-si304 austenite stainless steel[J].Hot Working Technology, 2017, 46(16):144-148(in Chinese). [100] THAKUR D G, RAMAMOORTHY B, VIJAYARAGHAVAN L. Machinability investigation of Inconel 718 in high-speed turning[J].International Journal of Advanced Manufacturing Technology, 2009, 45(5-6):421-429. [101] OEZKAYA E, BEER N, BIERMANN D. Experimental studies and CFD simulation of the internal cooling conditions when drilling Inconel 718[J].International Journal of Machine Tools and Manufacture, 2016, 108:52-65. [102] HAO Z P, GAO D, FAN Y H, et al. New observations on tool wear mechanism in dry machining Inconel718[J].International Journal of Machine Tools and Manufacture, 2011, 51(12):973-979. [103] 钟丽琼. 表面形变强化残余应力场对Inconel718高温合金高周疲劳性能的影响规律研究[D]. 贵阳:贵州大学, 2019:43-56. ZHONG L Q. Study on the effect of surface strengthened residual stress field on high cycle fatigue properties of inconel 1718 super alloy[D]. Guiyang:Guizhou University, 2019:43-56(in Chinese). [104] YU T B, GUO X P, WANG Z H, et al. Effects of the ultrasonic vibration field on polishing process of nickel-based alloy Inconel718[J].Journal of Materials Processing Technology, 2019, 273:116228. [105] WANG T, WANG D P, LI G, et al. Investigations on the nanocrystallization of 40Cr using ultrasonic surface rolling processing[J].Applied Surface Science, 2008, 255(5):1824-1829. [106] ZHANG Q L, HU Z Q, SU W W, et al. Microstructure and surface properties of 17-4PH stainless steel by ultrasonic surface rolling technology[J].Surface and Coatings Technology, 2017, 321:64-73. [107] CHENG M L, ZHANG D Y, CHEN H W, et al. Surface nanocrystallization and its effect on fatigue performance of high-strength materials treated by ultrasonic rolling process[J].The International Journal of Advanced Manufacturing Technology, 2016, 83(1-4):123-131. [108] LAI F Q, QU S G, LEWIS R, et al. The influence of ultrasonic surface rolling on the fatigue and wear properties of 23-8 N engine valve steel[J].International Journal of Fatigue, 2019, 125:299-313. [109] 李真, 王俊, 邓凡臣, 等.复合材料机身壁板的强度分析、试验及验证[J/OL]. 航空学报,(2020-01-04)[2020-01-21].http://kns.cnki.net/kcms/detail/11.1929.v.20200119.1455.008.html. LI Z, WANG J, DENG F C, et al. Strength analysis, test and verification of composite fuselage panels[J].Acta Aeronautica et Astronautica Sinica, (2020-01-04)[2020-01-21]. http://kns.cnki.net/kcms/detail/11.1929.v.20200119.1455.008.html (in Chinese). [110] 赵运才, 张飞. 静压力对超声滚压表层特性的影响[J].表面技术, 2017, 46(5):152-158. ZHAO Y C, ZHANG F. Effect of static pressure on surface characteristics of ultrasonic rolling[J].Surface Technology, 2017, 46(5):152-158(in Chinese). [111] 宋锦春, 贾志强, 张敏鑫. 超声滚压光整加工参数对45钢表面粗糙度和硬度的影响[J].制造技术与机床, 2016(11):85-89. SONG J C, JIA Z Q, ZHANG M X. Influence of ultrasonic rolling and finishing processing parameters on surface roughness and hardness of 45 steel[J].Manufacturing Technology and Machine Tool, 2016(11):85-89(in Chinese). [112] 陈利钦, 项彬, 任学冲, 等. 表面超声滚压处理工艺对高速列车车轴钢表面状态的影响[J].中国表面工程, 2014, 27(5):96-101. CHEN L Q, XIANG B, REN X C, et al. Influence of Surface ultrasonic rolling processing parameters on surface condition of axle steel used in high speed trains[J].China Surface Engineering, 2014, 27(5):96-101(in Chinese). [113] 郑建新, 蒋书祥. 7050铝合金二维超声滚压加工残余应力场研究[J].表面技术, 2017, 46(12):265-269. ZHENG J X, JIANG S X. Residual stress field in the process of 2 d ultrasonic rolling 7050 aluminum alloy[J].Surface Technology, 2017, 46(12):265-269(in Chinese). [114] 郑建新, 侯雅丽. 纵-扭复合振动超声深滚加工工艺试验[J].中国机械工程, 2016, 27(19):2636-2640. ZHENG J X, HOU Y L. Technology experiments of ul-trasonic deep rolling with longitudinal-torsion vibra-tion[J].China Mechanical Engineering, 2016, 27(19):2636-2640(in Chinese). [115] WU B, WANG P, PYOUN Y S, et al. Effect of ultrason-ic nanocrystal surface modification on the fatigue beha-viors of plasmanitrided S45C steel[J].Surface and Coatings Technology, 2012, 213:271-277. [116] LI G, QU S G, PAN Y X, et al. Effects of the different frequencies and loads of ultrasonic surface rolling on surface mechanical properties and fretting wear resistance of HIP Ti-6Al-4V alloy[J].Applied Surface Science, 2016, 389:324-334. [117] LI G, QU S, XIE M X, et al. Effect of ultrasonic surface rolling at low temperatures on surface layer microstruc-ture and properties of HIP Ti-6Al-4V alloy[J].Surface and Coatings Technology, 2017, 316:75-84. [118] PRAKASH N A, GNANAMOORTHY R, KAMARAJ M. Microstructural evolution and mechanical properties of oil jet peened aluminium alloy, AA6063-T6[J].Materials and Design, 2010, 31(9):4066-4075. [119] 刘宇, 王立君, 王东坡, 等. 超声表面滚压加工40Cr表层的纳米力学性能[J].天津大学学报, 2012, 45(7):656-661. LIU Y, WANG L J, WANG D P, et al. Nano mechanical properties of 40Cr surface layer after ultrasonic surface rolling processing[J].Journal of Tianjin University, 2012, 45(7):656-661(in Chinese). [120] 邹章雄, 项金钟, 许思勇. Hall-Petch关系的理论推导及其适用范围讨论[J].物理测试, 2012, 30(6):17-21. ZOU Z X, XIANG J Z, XU S Y. Theoretical derivation of hall-petch relationship and discussion of its applicable range[J].Physics Examination and Testing, 2012, 30(6):17-21(in Chinese). [121] 叶寒, 赖刘生, 李骏, 等. 超声滚压强化7075铝合金工件表面性能的研究[J].表面技术, 2018, 47(2):8-13. YE H,LAI L S, LI J, et al. Surface Properties of 7075 aluminum alloy workpieces after ultrasonic burnishing processing[J].Surface Technology, 2018, 47(2):8-13(in Chinese). [122] KIM J C, CHEONG S K, NOGUCHI H. Evolution of residual stress redistribution associated with localized surface microcracking in shot-peened medium-carbon steel during fatigue test[J].International Journal of Fa-tigue, 2013, 55:147-157. [123] 赵波, 李鹏涛, 张存鹰, 等. 超声振动方向对TC4钛合金铣削特性的影响[J].航空学报, 2020,41(2):623301. ZHAO B, LI P T, ZHANG C Y, et al. Effect of ultrasonic vibration direction on milling characteristics of TC4 titanium alloy[J].Acta Aeronautica et Astronautica Sinica, 2020, 41(2):623301(in Chinese). [124] ZHAO X H, XUE G L, LIU Y. Gradient crystalline structure induced by ultrasonic impacting and rolling and its effect on fatigue behavior of TC11 titanium alloy[J].Results in Physics, 2017, 7:1845-1851. [125] 何婧, 赵飞, 王稼林, 等. 表面超声滚压工艺参数对Inconel718疲劳寿命的影响[J].热加工工艺, 2017, 46(10):116-119. HE Q, ZHAO F, WANG J L, et al. Effect of surface ultrasonic rolling process parameters on fatigue life of inconel 718[J].Hot Working Technology, 2017, 46(10):116-119(in Chinese). [126] 王义, 鲍绍箕. 超声振动挤压强化工艺研究(二)——工艺参数对其强化效果的影响[J].电加工, 1993(3):22-26. WANG Y, BAO S Q. Study on the strengthening process of ultrasonic vibration extrusion (Ⅱ)-the influence of process parameters on the strengthening effect[J].Electrical Machining, 1993(3):22-26(in Chinese). [127] LI G, QU S G, XIE M X, et al. Effect of multi-pass ul-trasonic surface rolling on the mechanical and fatigue properties of HIP Ti-6Al-4V Alloy[J].Materials, 2017, 10(2):133. [128] ZHAO W D,LIU D X,ZHANG X H, et al. Improving the fretting and corrosion fatigue performance of 300M ultra-high strength steel using the ultrasonic surface rolling process[J].International Journal of Fatigue, 2019, 121:30-38 [129] 张胜博, 向嵩, 成桃, 等. 超声滚压20CrMnTi纳米化表面对局部腐蚀萌生行为的影响[J].表面技术, 2019, 48(8):136-143. ZHANG S B, XIANG S, CHENG T, et al. Influence of surface nanocrystallization of 20crmnti on behavior of localized corrosion by ultrasonic surface rolling processing[J].Surface Technology, 2019, 48(8):136-143(in Chinese). [130] WU B, ZHANG J X, ZHANG L J, et al. Effect of ultrasonic nanocrystal surface modification on surface and fatigue properties of quenching and tempering S45C steel[J].Applied Surface Science, 2014, 321:318-330. [131] 高玉魁. 表面完整性理论与应用[M]. 北京:化学工业出版社, 2014:241-244. GAO Y K. Surface integrity theory and its applic-ations[M]. Beijing:Chemical Industry Press, 2014:241-244(in Chinese). |
[1] | 聂祥樊, 李阳, 王亚洲, 万全红, 何卫锋. 飞机结构激光冲击强化研究进展与展望[J]. 航空学报, 2023, 44(24): 28595-028595. |
[2] | 高会良, 陈洪胜, 王文先, 柴斐, 汪卓然, 刘国廷, 巩鹏飞. 铝/铜层状复合板真空电子束焊接行为[J]. 航空学报, 2023, 44(19): 428288-428288. |
[3] | 路来骁, 徐长官, 刘建华, 秦美镇, 吕英波, 阎玉芹. 初始应力状态对薄壁件双侧滚压影响规律[J]. 航空学报, 2023, 44(10): 427415-427415. |
[4] | 刘振东, 郑锡涛, 范雯静, 张东健. 固化残余应力对无人机复合材料机翼强度的影响[J]. 航空学报, 2022, 43(6): 526117-526117. |
[5] | 杨建凯, 顾冬冬, 葛庆, 檀晨晨, 文雨. 铝合金激光增材制造支撑布局及精确成形机制[J]. 航空学报, 2022, 43(4): 525331-525331. |
[6] | 胡宪亮, 乔红超, 赵吉宾, 陆莹, 吴嘉俊, 杨玉奇. 激光冲击波对单晶合金抗热腐蚀性能的影响[J]. 航空学报, 2022, 43(4): 525591-525591. |
[7] | 刘欣, 杨景超, 李恒, 张艳红, 杨智伟, 谷箐菲, 李光俊, 黄丹. 管路构件塑性变形连接技术研究进展及挑战[J]. 航空学报, 2022, 43(4): 525258-525258. |
[8] | 肖贵坚, 刘帅, 贺毅, 刘岗, 朱升旺, 宋沙雨. 钛合金激光砂带加工的离焦控制与表面形貌[J]. 航空学报, 2022, 43(4): 525603-525603. |
[9] | 李汇, 李光先, 高瑞麟, 金鑫, 刘璐, 李朝将, Songlin DING. 不锈钢增材制造件后处理工艺研究进展[J]. 航空学报, 2022, 43(4): 525847-525847. |
[10] | 彭振龙, 张翔宇, 张德远. 航空航天难加工材料高速超声波动式切削方法[J]. 航空学报, 2022, 43(4): 525587-525587. |
[11] | 尚勇, 冯阳, 刘巧沐, 王君武, 杨惠君, 茹毅, 张恒, 赵文月, 裴延玲, 李树索, 宫声凯. 大型科学装置在航空发动机高温结构材料和涂层上的研究与应用[J]. 航空学报, 2022, 43(10): 527481-527481. |
[12] | 王连庆, 胡雅楠, 车志刚, 吴圣川. 激光冲击强化7075铝合金熔焊接头的疲劳性能[J]. 航空学报, 2021, 42(5): 524320-524320. |
[13] | 韩坤鹏, 张定华, 姚倡锋, 谭靓, 周征. 滚压强化表面状态特征的疲劳演化及抗疲劳机制研究进展[J]. 航空学报, 2021, 42(10): 524302-524302. |
[14] | 杜旭, 张腾, 何宇廷, 张天宇, 张胜, 冯宇. 孔冷挤压有限元仿真中的铰削分界面位置确定方法[J]. 航空学报, 2019, 40(4): 422674-422674. |
[15] | 黄云, 肖贵坚, 邹莱. 航空发动机叶片机器人精密砂带磨削研究现状及发展趋势[J]. 航空学报, 2019, 40(3): 22508-022508. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学