航空学报 > 2019, Vol. 40 Issue (5): 122632-122632   doi: 10.7527/S1000-6893.2018.22632

涡扇发动机多动力学建模方法

潘慕绚1, 陈强龙1, 周永权2, 周文祥1, 黄金泉1   

  1. 1. 南京航空航天大学 能源与动力学院, 南京 210016;
    2. 中国航发控制系统研究所, 无锡 214063
  • 收稿日期:2018-08-28 修回日期:2018-09-21 出版日期:2019-05-15 发布日期:2018-11-23
  • 通讯作者: 周文祥 E-mail:zhouwx@nuaa.edu.cn
  • 基金资助:
    国家自然科学基金(51406084);江苏省航空动力系统重点实验室基金(NJ20160020)

A multi-dynamics approach to turbofan engine modeling

PAN Muxuan1, CHEN Qianglong1, ZHOU Yongquan2, ZHOU Wenxiang1, HUANG Jinquan1   

  1. 1. College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    2. AECC Aero Engine Control System Institute, Wuxi 214063, China
  • Received:2018-08-28 Revised:2018-09-21 Online:2019-05-15 Published:2018-11-23
  • Supported by:
    National Natural Science Foundation of China (51406084); Jiangsu Province Key Laboratory Foundation of Aerospace Power System (NJ20160020)

摘要: 考虑涡扇发动机转子部件的惯性、容腔中质量与能量的堆积效应和高低温部件间的热交换,依据转子动力学、容积动力学及热力学建立涡扇发动机部件级非线性动态数学模型。通过求解质量、动量和能量的一阶微分方程,获得发动机典型截面处的性能参数。该模型能够反映涡扇发动机温度、压力、转速等12个关键参数的动态特性,避免传统转子动力学迭代模型的迭代求解,提高了模型实时性。模型输出与试验数据对比结果表明,其稳态误差小于1.6%,最大动态误差小于5%,单次流路计算平均耗时为0.009 ms。

关键词: 涡扇发动机, 转子动力学, 容积动力学, 热力学, 多动力学建模

Abstract: Considering the rotor inertia, the storage of mass and energy in volumes and the heat exchanging between high-temperature components and low-temperature components, an approach to model turbofan engines is presented. By adopting the shaft dynamics, the volume dynamics, and the thermodynamics, a nonlinear dynamic mathematical model for turbofan engines is formed. The characteristic parameters at the primary sections are obtained by solving a series of first-order ordinary differential equations. The new model can not only simulate the dynamic characteristics of 12 key parameters of turbofan engine, such as temperatures, pressures, and rotor speeds, but also improve the real-time performance by avoiding solving the traditional rotor dynamics iterative model. The comparison between the new model outputs and the test measurements is conducted. The results show that the static error is less than 1.6% and the maximum dynamic error is less than 5%, and the average time for a single flow-path computation is 0.009 ms.

Key words: turbofan engine, shaft dynamics, volume dynamics, thermodynamics, multi-dynamics modeling

中图分类号: