[1] WU S N, CHU W M, MA X, et al. Multi-objective integrated robust H∞ control for attitude tracking of a flexible spacecraft[J]. Acta Astronautica, 2018, 151:80-87. [2] FUY, LIU Y, HUANG D. Boundary output feedback control of a flexible spacecraft system with input constraint[J]. IET Control Theory & Applications, 2018, 12(5):571-581. [3] WUB L, WANG D W, POH E K. Decentralized sliding-mode control for attitude synchronization in spacecraft formation[J]. International Journal of Robust and Nonlinear Control, 2013, 23(11):1183-1197. [4] 岳宝增, 李晓玉. 航天器平移及姿态机动自适应终端滑模控制[J]. 动力学与控制学报, 2018, 16(4):332-336. YUE B Z, LI X Y. Adaptive terminal sliding mode control for spacecraft with translation and attitude maneuvers[J]. Journal of Dynamics and Control, 2018, 16(4):332-336(in Chinese). [5] SHTESSELY, TALEB M, PLESTAN F. A novel adaptive-gain supertwisting sliding mode controller:Methodology and application[J]. Automatica, 2012, 48(5):759-769. [6] ZHU Z, XIA Y, FU M. Adaptive sliding mode control for attitude stabilization with actuator saturation[J]. IEEE Transactions on Industrial Electronics, 2011, 58(10):4898-4907. [7] CONG B, CHEN Z, LIU X. Disturbance observer-based adaptive integral sliding mode control for rigid spacecraft attitude maneuvers[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2013, 227(10):1660-1671. [8] JIN E, SUN Z. Robust controllers design with finite time convergence for rigid spacecraft attitude tracking control[J]. Aerospace Science and Technology, 2008, 12(4):324-330. [9] FENG Y, YU X, HAN F. On nonsingular terminal sliding-mode control of nonlinear systems[J]. Automatica, 2013, 49(6):1715-1722. [10] YANG L, YANG J. Nonsingular fast terminal sliding-mode control for nonlinear dynamical systems[J]. International Journal of Robust and Nonlinear Control, 2011, 21(16):1865-1879. [11] LU K, XIA Y Q. Finite-time attitude stabilization for rigid spacecraft[J]. International Journal of Robust and Nonlinear Control, 2015, 25(1):32-51. [12] ZONG Q, ZHANG X Y, SHAO S K, et al. Disturbance observer-based fault-tolerant attitude tracking control for rigid spacecraft with finite-time convergence[J/OL]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, (2017-11-19)[2018-06-13]. https://doi.org/10.1177/0954410017740918. [13] SHAO S K, ZONG Q, TIAN B L, et al. Finite-time sliding mode attitude control for rigid spacecraft without angular velocity measurement[J]. Journal of the Franklin Institute, 2017, 354(12):4656-4674. [14] 宗群, 邵士凯, 张秀云, 等. 刚体航天器有限时间输出反馈姿态跟踪控制[J]. 哈尔滨工业大学学报, 2017, 46(9):136-143. ZONG Q, SHAO S K, ZHANG X Y, et al. Finite-time output feedback attitude tracking control for rigid spacecraft[J]. Journal of Harbin Institute of Technology, 2017, 46(9):136-143(in Chinese). [15] XIAO B, HU Q L, FRISWELL M I. Active fault-tolerant attitude control for flexible spacecraft with loss of actuator effectiveness[J]. International Journal of Adaptive Control & Signal Processing, 2013, 27(11):925-943. [16] SINGHOSE W. Command shaping for flexible systems:A review of the first 50 years[J]. International Journal of Precision Engineering and Manufacturing, 2009, 10(4):153-168. [17] YUE B Z, ZHU L M. Hybrid control of liquid filled spacecraft maneuver by dynamic inversion and input shaping[J]. AIAA Journal, 2014, 52(3):618-626. [18] MAR R, GOYAL A, NGUYEN V, et al. Combined input shaping and feedback control for double-pendulum systems[J]. Mechanical Systems and Signal Processing, 2017, 85(15):267-277. [19] HU Q L. Input shaping and variable structure control for simultaneous precision positioning and vibration reduction of flexible spacecraft with saturation compensation[J]. Journal of Sound and Vibration, 2008, 318(12):18-35. [20] 苗双全, 丛炳龙, 刘向东. 基于输入成形的柔性航天器自适应滑模控制[J]. 航空学报, 2013, 34(8):1906-1914. MIAO S Q, CONG B L, LIU X D. Adaptive sliding mode control of flexible spacecraft on input shaping[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(8):1906-1914(in Chinese). [21] 肖冰, 胡庆雷, 霍星, 等. 执行器故障的柔性航天器姿态滑模容错控制[J]. 航空学报, 2011, 32(10):1869-1878. XIAO B, HU Q L, HUO X, et al. Sliding mode fault tolerant attitude control for flexible spacecraft under actuator fault[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(10):1869-1878(in Chinese). [22] COSTIC B T, DAWSON D M, QUWIEOZ M S, et al. Quaternion-based adaptive attitude tracking controller without velocity measurements[J]. Journal of Guidance, Control, and Dynamics, 2001, 24(6):1214-1222. [23] SHEN Q, WANG D W, ZHU S Q, et al. Finite-time fault-tolerant attitude stabilization for spacecraft with actuator saturation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(3):2390-2405. [24] EDWARDS C, SPURGEON S K, PATTON R J. Sliding mode observers for fault detection and isolation[J]. Automatica, 2000, 36(4):541-553. [25] UTKIN V I. Sliding modes in control optimization[M]. Berlin:Springer-Verlag, 1992. [26] 程丽丽. 有限时间收敛控制性能指标的分析研究[D]. 曲阜:曲阜师范大学, 2007. CHENG L L. The analysis of performance indicators of finite time convergence control[D]. Qufu:Qufu Normal University, 2007(in Chinese). [27] WU Y Q, YU X H, MAN Z H. Terminal sliding mode control design for uncertain dynamic systems[J]. Systems & Control Letters, 1998, 34(5):281-287. [28] TIAN B L, LIU L H, LU H C, et al. Multivariable finite time attitude control for quadrotor UAV:Theory and experimentation[J]. IEEE Transactions on Industrial Electronics, 2018, 65(3):2567-2577. |