航空学报 > 2018, Vol. 39 Issue (S1): 721651-721651   doi: 10.7527/S1000-6893.2018.21651

面向大尺度结构的力学超材料减振技术

温卓群, 王鹏飞, 张雁, 蒋艳芬   

  1. 钱学森空间技术实验室, 北京 100094
  • 收稿日期:2018-03-09 修回日期:2018-06-14 出版日期:2018-12-30 发布日期:2018-10-30
  • 通讯作者: 王鹏飞 E-mail:wangpengfei@qxslab.cn
  • 基金资助:
    国家自然科学基金(U163720007)

Vibration reduction technology of mechanical metamaterials presented to large scale structures

WEN Zhuoqun, WANG Pengfei, ZHANG Yan, JIANG Yanfen   

  1. Qian Xuesen Laboratory of Space Technology, Beijing 100094
  • Received:2018-03-09 Revised:2018-06-14 Online:2018-12-30 Published:2018-10-30
  • Supported by:
    National Natural Science Foundation of China (U163720007)

摘要: 随着航天器的大型化发展,振动控制策略已成为被广泛关注的关键技术之一,尤其针对大尺度薄膜结构的低频振动问题,传统减振方法难以发挥作用。为此,提出了基于局域共振原理的力学超材料结构,并利用该材料设计了一种新型的中低频被动减振结构,通过改变超材料单元结构可显著调控减振带隙的位置与带宽,被动减振频率最低可达100 Hz以内,对未来航天器的振动控制有一定的指导意义。

关键词: 声子晶体, 力学超材料, 低频带隙, 模态分析, 振动控制, 局域共振

Abstract: As spacecrafts are growing larger, the vibration control strategy has become one of the critical technologies of wide concern. Traditional vibration reduction methods have many limitations, especially for the low frequency vibration problem of large-scale thin-film structures. To solve this problem, a novel structure of the mechanical metamaterial for compromising low-and medium-frequency vibration is presented based on the local resonance principle. Changing the unit structure of metamaterials can significantly adjust the position and width of the acoustic band gap. The lowest frequency of this metamaterial structure sits below 100 Hz through passively damping vibration, which will massively contribute to vibration control of spacecraft in the future.

Key words: photonic crystal, mechanical metamaterials, low-frequency band gap, modal analysis, vibration control, localized resonance

中图分类号: