[1] BENDSOE M P, KIKUCHI N. Generating optimal topologies in structural design using a homogenization method[J]. Computer Methods in Applied Mechanics and Engineering, 1988, 71(2):197-224.
[2] ESCHENAUER H A, OLHOFF N. Topology optimization of continuum structures:A review[J]. Applied Mechanics Reviews, 2001, 54(4):331-390.
[3] ROZVANY G I N. A critical review of established methods of structural topology optimization[J]. Structural and Multidisciplinary Optimization, 2009, 37(3):217-237.
[4] SIGMUND O, MAUTE K. Topology optimization approaches[J]. Structural and Multidisciplinary Optimization, 2013, 48(6):1031-1055.
[5] DEATON J D, GRANDHI R V. A survey of structural and multidisciplinary continuum topology optimization:Post 2000[J]. Structural and Multidisciplinary Optimization, 2014, 49(1):1-38.
[6] XIA L, XIA Q, HUANG X, et al. Bi-directional evolutionary structural optimization on advanced structures and materials:A comprehensive review[J]. Archives of Computational Methods in Engineering, DOI 10.1007/s11831-016-9203-2.
[7] DIAZ A R, KIKUCHI N. Solutions to shape and topology eigenvalue optimization problems using a homogenization method[J]. International Journal for Numerical Methods in Engineering, 1992, 35(7):1487-1502.
[8] MA Z D, KIKUCHI N, CHENG H C. Topological design for vibrating structures[J]. Computer Methods in Applied Mechanics and Engineering, 1995, 121(1-4):259-280.
[9] XIE Y M, STEVEN G P. Evolutionary structural optimization for dynamic problems[J]. Computers & Structures, 1996, 58(6):1067-1073.
[10] DU J, OLHOFF N. Minimization of sound radiation from vibrating bi-material structures using topology optimization[J]. Structural and Multidisciplinary Optimization, 2007, 33(4-5):305-321.
[11] DU J, OLHOFF N. Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gaps[J]. Structural and Multidisciplinary Optimization, 2007, 34(2):91-110.
[12] DU J, OLHOFF N. Topological design of vibrating structures with respect to optimum sound pressure characteristics in a surrounding acoustic medium[J]. Structural and Multidisciplinary Optimization, 2010, 42(1):43-54.
[13] JOG C S. Topology design of structures subjected to periodic loading[J]. Journal of Sound and Vibration, 2002, 253(3):687-709.
[14] KANG B S, PARK G J, ARORA J S. A review of optimization of structures subjected to transient loads[J]. Structural and Multidisciplinary Optimization, 2006, 31(2):81-95.
[15] KANG Z, ZHANG X, JIANG S, et al. On topology optimization of damping layer in shell structures under harmonic excitations[J]. Structural and Multidisciplinary Optimization, 2012, 46(1):51-67.
[16] LIU H, ZHANG W H, GAO T. A comparative study of dynamic analysis methods for structural topology optimization under harmonic force excitations[J]. Structural and Multidisciplinary Optimization, 2015, 51(6):1321-1333.
[17] NIU B, OLHOFF N, LUND E, et al. Discrete material optimization of vibrating laminated composite plates for minimum sound radiation[J]. International Journal of Solids and Structures, 2010, 47(16):2097-2114.
[18] NIELS O, DU J. Generalized incremental frequency method for topological design of continuum structures for minimum dynamic compliance subject to forced vibration at a prescribed low or high value of the excitation frequency[J]. Structural and Multidisciplinary Optimization, 2016, 54(5):1113-1141.
[19] ZHAO J, WANG C. Dynamic response topology optimization in the time domain using model reduction method[J]. Structural and Multidisciplinary Optimization, 2016, 53(1):101-114.
[20] ZARGHAM S, WARD T H, RAMLI R, et al. Topology optimization:A review for structural designs under vibration problems[J]. Structural and Multidisciplinary Optimization, 2016, 53(6):1157-1177.
[21] THOMSEN J. Topology optimization of structures composed of one or two materials[J]. Journal of Structural Optimization, 1992, 5(1-2):108-115.
[22] SIGMUND O, TORQUATO S. Design of materials with extreme thermal expansion using a three-phase topology optimization method[J]. Journal of Mechanics and Physics of Solids, 1997, 45(6):1037-1067.
[23] GIBIANSKY L V, SIGMUND O. Multiphase composites with extremal bulk modulus[J]. Journal of the Mechanics and Physics of Solids, 2000, 48(3):461-498.
[24] WANG M Y, WANG X. "Color" level sets:A multi-phase method for structural topology optimization with multiple materials[J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193(6):469-496.
[25] ZHOU S W, WANG M Y. Multimaterial structural topology optimization with a generalized Cahn-Hilliard model of multiphase transition[J]. Structural and Multidisciplinary Optimization, 2007, 33(2):89-111.
[26] HUANG X, XIE Y M. Bi-directional evolutionary topology optimization of continuum structures with one or multiple materials[J]. Computational Mechanics, 2009, 43(3):393-401.
[27] YIN L, ANANTHASURESH G K. Topology of compliant mechanisms with multiple material using a peak function material interpolation scheme[J]. Structural and Multidisciplinary Optimization, 2001, 23(1):49-62.
[28] GAO T, ZHANG W. A mass constraint formulation for structural topology optimization with multiphase materials[J]. International Journal for Numerical Methods in Engineering, 2011, 88(8):774-796.
[29] GAO T, XU P, ZHANG W. Topology optimization of thermo-elastic structures with multiple materials under mass constraint[J]. Computers and Structures, 2016, 173:150-160.
[30] TAKAKOLI R, MOHSENI S M. Alternating active-phase algorithm for multimaterial topology optimization problems:A 115-line MATLAB implementation[J]. Structural and Multidisciplinary Optimization, 2014, 49(4):621-642.
[31] ZUO W, SAITOU K. Multi-material topology optimization using ordered SIMP interpolation[J]. Structural and Multidisciplinary Optimization, DOI:10.1007/s00158-016-1513-3.
[32] 隋允康. 建模·变换·优化——结构综合方法新进展[M]. 大连:大连理工大学出版社,1996:87-195. SUI Y K. Modelling, transformation and optimization-New developments of structural synthesis method[M]. Dalian:Dalian University of Technology Press, 1996:87-195(in Chinese).
[33] 隋允康, 叶红玲, 杜家政. 结构拓扑优化的发展及其模型转化为独立层次的迫切性[J]. 工程力学, 2005, 22(增):107-118. SUI Y K, YE H L, DU J Z. Development of structural topological optimization and imminency of its model transformation into independent level[J]. Engineering Mechanics, 2005, 22(Sup):107-118(in Chinese).
[34] 隋允康, 叶红玲. 连续体结构拓扑优化的ICM方法[M]. 北京:科学出版社, 2013:27-222. SUI Y J, YE H L. Continuum topology optimization methods ICM[M]. Beijing:Science Press, 2013:27-222(in Chinese).
[35] PEDERSEN N L. Maximization of eigenvalues using topology optimization[J]. Structural and Multidisciplinary Optimization, 2000, 20(1):2-11.
[36] HUANG X, ZUO Z H, XIE Y M. Evolutionary topological optimization of vibrating continuum structures for natural frequencies[J]. Computer & Structures, 2010, 88(5):357-364.
[37] 彭细荣, 隋允康. 有频率禁区的连续体结构拓扑优化[J]. 固体力学学报, 2007, 28(2):145-150. PENG X R, SUI Y K. Topological optimization of the continuum structure with non-frequency-band constraints[J]. Acta Mechanica Solida Sinica, 2007, 28(2):145-150(in Chinese).
[38] 彭细荣, 隋允康. 用ICM法拓扑优化静位移及频率约束下连续体结构[J]. 计算力学学报, 2006, 23(4):391-396. PENG X R, SUI Y K. Topological optimization of continuum structure with static displacement and frequency constraints by ICM method[J]. Chinese Journal of Computational Mechanics, 2006, 23(4):391-396(in Chinese).
[39] SUI Y, PENG X. The ICM method with objective function transformed by variable discrete condition for continuum structure[J]. Acta Mechanica Sinica, 2006, 22(1):68-75.
[40] YE H L, WANG W W, CHEN N, et al. Plate/shell topological optimization subjected to linear buckling constraints by adopting composite exponential filtering function[J]. Acta Mechanica Sinica, 2016, 32(4):649-658.
[41] DIAZ A, SIGMUND O. Checkerboard patterns in layout optimization[J]. Structural Optimization, 1995, 10(1):40-45.
[42] SIGMUND O, PETERSSON J. Numerical instabilities in topology optimization:A survey on procedures dealing with checkerboards, mesh-dependencies and local minima[J]. Structural Optimization, 1998, 16(1):68-75.
[43] LAZAROV B S, SIGMUND O. Filters in topology optimization based on Helmholtz-type differential equations[J]. International Journal for numerical Methods in Engineering, 2011, 86(6):765-781. |