[1] Loewy R G. Review of rotary-wing V/STOL dynamic and aeroelastic problems[J]. Journal of the American Helicopter Society, 1969, 14(3): 3-23.
[2] Dat R. Aeroelasticity of rotary wing aircraft in helicopter aerodynamics and dynamics[J]. AGARD Lecture Series, 1973, 63(4): 937-952.
[3] Friedmann P P. Recent development in rotary-wing aeroelasticity[J]. Journal of Aircraft, 1977, 14(11): 1027-1041.
[4] Friedmann P P. Formulation and solution of rotary-wing aeroelastic stability and response problems[J]. Vertica, 1983, 7(2): 101-141.
[5] Ormiston R A. Investigation of hingeless rotor stability[J]. Vertica, 1983, 7(2): 143-181.
[6] Loewy R G. Helicopter vibrations: a technological perspective[J]. Journal of the American Helicopter Society, 1984, 29(4): 4-30.
[7] Reichert G. Helicopter vibration control—a survey[J]. Vertica, 1981, 5(1): 1-20.
[8] Johnson W. Recent developments in dynamics of advanced rotor systems—Part I[J]. Vertica, 1986, 10(1): 73-107.
[9] Johnson W. Recent developments in dynamics of advanced rotor systems—Part II[J]. Vertica, 1986, 10(2): 109-150.
[10] Fu C Q. The development and state of the art of helicopter aeroelasticity[J]. Advances in Mechanics, 1986, 16(4): 511-516 (in Chinese). 符长青. 直升机气动弹性力学发展现状[J]. 力学进展, 1986, 16(4): 511-516.
[11] Friedmann P P. Recent trends in rotary-wing aeroelasticity[J]. Vertica, 1987, 11(1): 139-170.
[12] Ormiston R A, Warmbrodt W G, Hodges D H, et al. Survey of Army/NASA rotorcraft aeroelastic stability research, NASA/TM101026[R]. Moffett Field, CA: NASA Ames Resarch Center, 1971.
[13] Friedmann P P. Helicopter rotor dynamics and aeroelasticity: some key ideas and insights[J]. Vertica, 1990, 14(1): 101-121.
[14] Chopra I. Perspectives in aeromechanical stability of helicopter rotors[J]. Vertica, 1990, 14(4): 457-508.
[15] Friedmann P P, Hodges D A. Rotary-wing aeroelasticity with application to VTOL vehicles[C]// Flight Vehicle Materials, Structures, and Dynamics-Assessment and Future Directions. New York: American Society of Mechanical Engineers, 1993: 299-391.
[16] Friedmann P P. Renaissance of aeroelasticity and its future[J]. Journal of Aircraft, 1999, 36(1): 105-121.
[17] Friedmann P P. Rotary wing aeroelasticity—a historical perspective[J]. Journal of Aircraft, 2003, 40(6): 1019-1046.
[18] Friedmann P P. Rotary-wing aeroelasticity--current status and future trends[J]. AIAA Journal, 2004, 42(10): 1953-1972.
[19] Peters D A. How dynamic inflow survives in the competitive world of rotorcraft aerodynamics[J]. Journal of the American Helicopter Society, 2009, 54(1): 1-19.
[20] Johnson W. Milestones in rotorcraft aeromechanics Alexander A. Nikolsky honorary lecture[J]. Journal of the American Helicopter Society, 2011, 56(3): 1-24.
[21] Komerath N M , Smith M J, Tung C. A review of rotor wake physics and modeling[J]. Journal of the American Helicopter Society, 2011, 56(2): 1-19.
[22] He T P, Li S, Li X L. Research progress of dynamic stability of helicopter rotor/airframe[J]. Mechanics in Engineering, 2013, 35(3): 1-19 (in Chinese). 贺天鹏, 李书, 李小龙. 直升机旋翼/机体动稳定性研究进展[J]. 力学与实践, 2013, 35(3): 1-19.
[23] Wang S C, Xu G H. Progress of helicopter rotor aerodynamics[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2001,33(3): 203-211 (in Chinese). 王适存, 徐国华. 直升机旋翼空气动力学的发展[J]. 南京航空航天大学学报, 2001, 33(3): 203-211.
[24] Datta A, Nixon M, Chopra I. Review of rotor loads prediction with the emergence of rotorcraft CFD[J]. Journal of the American Helicopter Society, 2007, 52(4): 287-317.
[25] Zaki A. Using tightly-coupled CFD/CSD simulation for rotorcraft stability analysis[D]. Atlanta, GA: Georgia Institute of Technology, 2012.
[26] Lynch C E. Advanced CFD methods for wind turbine analysis[D]. Atlanta, GA: Georgia Institute of Technology, 2011.
[27] Johnson W. Helicopter theory[M]. Princeton: Press Princeton University, 1980: 469-596.
[28] Bisplinghoff R L, Ashley H, Halfman R L. Aeroelasticity[M]. Reading, MA: Addison Wesley Longman, 1955: 188-293.
[29] Leishman J G. Principles of helicopter aerodynamics[M]. 2nd ed. New York: Cambridge University Press, 2000: 423-519.
[30] Johnson W. The response and airloading of helicopter rotor blades due to dynamic stall, ASRL TR 1301[R]. Cambridge: Massachusetts Institute of Technology, 1970.
[31] Ronald G E. A mathematical model of unsteady aerodynamics and radial flow for application to helicopter rotors, D210-10492-1[R]. Philadelphia, PA: Boeing Vertol Co, 1973.
[32] Petot D. Differential equation modeling of dynamic stall[J]. La Recherche Aerospatiale (English Edition), 1989 (5): 59-72.
[33] Truong V K. A 2-D dynamic stall model based on a hopf bifurcation, ONERA-TAP-93-156[R]. Chatillon: Office National d'Etudes et de Recherches Aerospatiales, 1993.
[34] Johnson W. Recent developments in rotar-wing aerodynamic theory[J]. AIAA Journal, 1986, 24(8): 1219-1245.
[35] Wachspress D A, Quackenbush T R, Boschitsch A H. First-principles free-vortex wake analysis for helicopters and tiltrotors[C]// 59th American Helicopter Society Annual Forum. Arizona: American Helicopter Society, 2003: 1763-1786.
[36] Wang S C. Generalized vortex theory of the lifting rotor of helicopter, AD 286576[R]. Washington, D. C.: Department of Defense USA, 1961.
[37] Clark D R, Leiper A C. The free wake analysis a method for the prediction of helicopter rotor hovering performance[J]. Journal of the American Helicopter,Society, 1970, 15(1): 3-11.
[38] Landgrebe A J. An analytical and experimental investigation of helicopter rotor hover performance and wake geometry characteristics, K910828-31[R]. East Hartforo CT: United Aircraft Research Labs, 1971.
[39] Egolf T A, Landgrebe A J. Helicopter rotor wake geometry and its influence in forward flight, NASA CR/3726[R]. Hampton: NASA Langley Research Center, 1983.
[40] Beddoes T S. A wake model for high resolution airloads[C]// Proceedings of the 2nd International Conference on Basic Rotorcraft Research. Traingle Park, NC: American Helicopter Society, 1985.
[41] Johnson W. Wake model for helicopter rotors in high speed flight, NASA/CR-177507[R]. Moffett Field, CA: NASA Ames Research Center, 1988.
[42] Bagai A, Leishman J G. Rotor free-wake modeling using a pseudo-implicit technique including comparisons with experiment data[J]. Journal of the American Helicopter Society, 1995, 40(3): 29-41.
[43] Pitt D M, Peters D A. Rotor dynamic inflow derivatives and time constants from various inflow models[D]. Washington, D. C.: Washington University, 1980.
[44] Roberts T W, Murman E M. Solution method for hovering helicopter rotor using the Euler equations, AIAA-1985-0436[R]. Reston: AIAA, 1985.
[45] Sankar L N, Wake B E, Lekoudis S G. Solution of the unsteady euler equations for fixed and rotor wing configurations, AIAA-1985-0120[R]. Reston: AIAA, 1985.
[46] Kramer E, Hertel J, Wagner S. Computation of subsonic and transonic helicopter rotor flow using Euler equations[J]. Vertica, 1988, 12(3): 279-291.
[47] Chen C L, McCroskey W J. Numerical simulation of helicopter multi-bladed rotor flow, AIAA-1988-0046[R]. Reston: AIAA, 1988.
[48] Wake B E. A solution procedure for the Navier-Stokes equations applied to rotors[D]. Atalanta GA: Georgia Institute of Technology, 1987.
[49] Srinivasan G R, McCroskey W J. Navier-Stokes calculations of hovering rotor flowfields[J]. Journal of Aircraft, 1988, 25(10): 865-874.
[50] Agarwal R K, Deese J E. Navier-Stokes calculations of the flowfield of a helicopter rotor in hover, AIAA-1988-0106[R]. Reston: AIAA, 1988.
[51] Srinivasan G R, Baeder J D, Obayashi S, et al. Flowfield of a lifting rotor in hover: a Navier-Stokes simulation[J]. AIAA Journal, 1992, 30(10): 2371-2378.
[52] Wake B E, Baeder J D. Evaluation of a Navier-Stokes analysis method for hover performance prediction[J]. Journal of American Helicopter Society, 1992, 41(1): 7-17.
[53] Srinivasan G R, Baeder J D. TURNS: a free wake Euler/Navier-Stokes numerical method for helicopter rotors[J]. AIAA Journal, 1993, 31(5): 959-962.
[54] Ahmad J, Duque E P N. Helicopter rotor blade computation in unsteady flows using moving overset grids[J]. Journal of Aircraft, 1996, 33(1): 54-60.
[55] Jiang X, Chen Z B, Zhang Y L. Numerical simulation of a hovering rotor flowfield using a dual-time method[J]. Acta Aerodynamica Sinica, 1998,16(3): 288-296 (in Chinese). 江雄, 陈作斌, 张玉伦. 用双时间法数值模拟悬停旋翼流场[J]. 空气动力学学报, 1998, 16(3): 288-296.
[56] Yang A M, Qiao Z D. Navier-Stokes computation for a helicopter rotor in forward flight based on moving overset grids[J]. Acta Aeronautica et Astronautica Sinica, 2001,22(5): 434-436 (in Chinese). 杨爱明, 乔志德. 基于运动嵌套网格的前飞旋翼绕流Navier-Stokes方程数值计算[J]. 航空学报, 2001, 22(5): 434-436.
[57] Zhao Q J, Xu G H. A hybrid method based on Navier-Stokes/free wake/full-potential solver for rotor flow simulations[J]. Acta Aerodynamica Sinica, 2006, 24(1): 15-21 (in Chinese). 招启军, 徐国华. 基于Navier-Stokes方程/自由尾迹/全位势方程的旋翼流场模拟混合方法[J]. 空气动力学学报, 2006, 24(1): 15-21.
[58] Wie S Y, Im D K, Kwon J H, et al. Numerical simulation of rotor using coupled computational fluid dynamics and free wake[J]. Journal of Aircraft, 2010,47(4): 1167-1177.
[59] Rogers S E, Dietz W E, Suhs N E. Pegasus 5:an automated preprocessor for overset-grid computational fluid dynamics[J]. AIAA Journal, 2003, 41(6): 1037-1045.
[60] Yang W Q, Song B F, Song W P. Distance decreasing method for confirming corresponding cells of overset grids and its application[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(2): 205-212 (in Chinese). 杨文青, 宋笔锋, 宋文萍.高效确定重叠网格对应关系的距离减缩法及其应用[J].航空学报, 2009, 30(2): 205-212.
[61] Wang B, Zhao Q J, Xu G, et al. A new moving-embedded grid method for numerical simulation of unsteady flow-field of the helicopter rotor in forward flight[J]. Acta Aerodynamica Sinica, 2012, 30(1): 14-21 (in Chinese). 王博, 招启军, 徐广, 等.一种适合于旋翼前飞非定常流场计算的新型运动嵌套网格方法[J]. 空气动力学学报, 2012, 30(1): 14-21.
[62] Wei P, Shi Y J, Xu G H, et al. Numerical method for simulating rotor flow field based upon viscous vortex model[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(5): 771-780 (in Chinese). 魏鹏, 史勇杰, 徐国华, 等. 基于黏性涡模型的旋翼流场数值方法[J]. 航空学报, 2012, 33(5): 771-780.
[63] He C J, Zhao J G. Modeling rotor wake dynamics with viscous vortex particle method[J]. AIAA Journal, 2009, 47(4): 902-915.
[64] Biedron R T, Lee-Rauch E M. Rotor airloads prediction using unstructured meshes and loose CFD/CSD coupling, AIAA-2008-7341[R]. Reston: AIAA, 2008.
[65] Datta A, Baeder J, Chopra I, et al. CFD/CSD prediction of rotor vibratory loads in high-speed flight[J]. Journal of Aircraft, 2006, 43(6): 1698-1709.
[66] Potsdam M, Yeo H, Johnson W. Rotor airloads prediction using loose aerodynamic/structural coupling[J]. Journal of Aircraft, 2006, 43(3): 732-742.
[67] Gerhold T, Neumann J. The parallel mesh deformation of the DLR TAU-code[J]. New Results in Numerical and Experimental Fluid, 2007, 96(6): 162-169.
[68] Dietz M, Kessler M. Trimmed simulation of a complete helicopter configuration using fluid-structure coupling[C]// High Performance Computing in Science. Berlin: Springer-Verlag, 2008: 487-501.
[69] Meunier M. Simulation and optimization of flow control strategies for novel high-lift configurations[J]. AIAA Journal, 2009, 47(5): 1145-1157.
[70] Mavriplis D J. Multigrid solution for the discrete adjoint for optimization problems on unstructured meshes[J]. AIAA Journal, 2006, 44(1): 42-50.
[71] Miller R H, Ellis C W. Blade vibration and flutter[J]. Journal of the American Helicopter Society, 1956, 1(3): 19-38.
[72] Friedmann P P, Dewey H H. Rotary wing aeroelasticity-a historical perspective[J]. Journal of Aircraft, 2003, 40(6): 1019-1046.
[73] Daughaday H, Duwaldt F A, Gates C A. Investigation of helicopter blade flutter and load amplification problems[J]. Journal of the American Helicopter Society, 1957, 2(3): 27-45.
[74] Chou P C. Pitch-lag instability of helicopter rotors[J]. Journal of the American Helicopter Society, 1958, 3(3): 30-38.
[75] Young M F. A theory of rotor blade motion stability in powered flight[J]. Journal of the American Helicopter Society, 1964, 9(3): 12-25.
[76] Hohenemser K H, Heaton P W. Aeroelastic instability of torsionally rigid helicopter blades[J]. Journal of the American Helicopter Society, 1967, 12(2): 1-13.
[77] Bielawa R L. A second order non-linear theory of the aeroelastic properties of helicopter blades in forward flight[D]. Cambridge, MA: Massachusetts Institute of Technology, 1965.
[78] Friedmann P P, Tong P. Dynamic nonlinear elastic stability of helicopter rotor blades in hover and in forward flight NASA/CR-114485[R]. Moffett Field, CA: NASA Ames Research Center, 1972.
[79] Horvay G. Rotor blade flapping motion[J]. Quarterly of Applied Mathematics, 1947, 5(2): 149-167.
[80] Friedmann P P, Kottapalli S. Coupled flap-lag-torsional dynamics of hingeless rotor blades in forward flight[J]. Journal of the American Helicopter Society, 1982, 27(4): 28-36.
[81] Panda B, Chopra I. Flap-lag-torsion stability in forward flight[J]. Journal of the American Helicopter Society, 1985, 29(4): 30-39.
[82] Bauchau O A, Wang J L. Efficient and robust approaches for rotorcraft stability analysis[J]. Journal of the American Helicopter Society, 2010, 55(3): 61-69.
[83] Mohan R, Gaonkar G H. Evaluation of dynamic stall models for rotorcraft stability predictions under high-speed, high-thrust conditions[C]//American Helicopter Society International- Next Generation Vertical Lift Specialists' Meeting. Washington, D. C.: American Helicopter Society, 2011: 207-235.
[84] Coleman R P, Feingold A M. Theory of self-excited mechanical oscillations of helicopter rotors with hinged blades, NACA/TR-1351[R]. Washington, D.C.: NASA, 1958.
[85] Donham R E, Cardinale S V, Sachs I B. Ground and air resonance characteristics of a soft in-plane rigid-rotor system[C]//Proceedings of the AIAA/AHS VTOL Research, Design and Operations Meeting. Reston: AIAA, 1968.
[86] Hodges D H. An aeromechanical stability analysis for bearingless rotor helicopters[J]. Journal of the American Helicopter Society, 1979, 24(1): 2-9.
[87] Bousman W G. An experimental investigation of the effects of aeroelastic couplings on aeromechanical stability of a hingeless rotor helicopter[J]. Journal of the American Helicopter Society, 1981, 26(1): 46-54.
[88] Johnson W. Influence of unsteady aerodynamics on hingeless rotor ground resonance[J]. Journal of Aircraft, 1982, 19(8): 668-673.
[89] Loewy R G, Zotto M. Helicopter ground/air resonance including rotor shaft flexibility and control coupling[C]// Proceedings of the 45th Annual Forum of the American Helicopter Society. Washington, D.C.: American Helicopter Society, 1989: 19-32.
[90] Torok M S, Chopra I. A coupled rotor aeroelastic analysis utilizing nonlinear aerodynamics and refined wake modeling[J]. Vertica, 1989, 13(2): 87-106.
[91] Yeo H, Potsdam M, Ormiston R A. Rotor aeroelastic stability analysis using coupled computational fluid dynamics/ computational structural dynamics[J]. Journal of the American Helicopter Society, 2011, 56(4): 88-103.
[92] Bauchau O A, Wang J L. Efficient and robust approaches for rotorcraft stability analysis[J]. Journal of the American Helicopter Society, 2010, 55(3): 0320061-0320069.
[93] Gaonkar M R, Gopal H. Evaluation of dynamic stall models for rotorcraft stability predictions under high-speed, high-thrust conditions[C]// American Helicopter Society International - Next Generation Vertical Lift Specialists' Meeting February. Washington, D. C.: American Helcopter Society, 2011: 236-252.
[94] Gaonkar M R, Gopal H. A unified assessment of fast Floquet, generalized Floquet, and periodic eigenvector methods for rotorcraft stability predictions[J]. Journal of the American Helicopter Society, 2013, 58(4): 1-12.
[95] Xue H F, Xiang J W, Zhang X G. Investigation of helicopter air resonance dynamic stability in forward flight and mutual excitation of different degrees of freedom[J]. Acta Aeronautica et Astronautica Sinica, 2005, 26(4): 454-457 (in Chinese). 薛海峰, 向锦武, 张晓谷. 直升机前飞空中共振稳定性和各自由度相互作用研究[J]. 航空学报, 2005, 26(4): 454-457.
[96] Wang B, Li S, Zhang X G. Influence analysis of helicopter air resonance with nonlinear interblade viscoelastic dampers[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(3): 550-555 (in Chinese). 王波, 李书, 张晓谷. 非线性叶间黏弹减摆器对直升机空中共振的影响分析[J]. 航空学报, 2007, 28(3): 550-555.
[97] Hou P, Yang W D, Sun D H, et al. Aeroelastic analysis of rotor/fuselage/landing gears coupled system for helicopter during rotor starting process in the ground[J]. Journal of Vibration Engineering, 2013, 26(3): 318-327 (in Chinese). 侯鹏, 杨卫东, 孙东红, 等. 直升机地面开车过程旋翼/机体/起落架耦合气弹动力学分析[J]. 振动工程学报, 2013, 26(3): 318-327.
[98] Flax A H. The bending of rotor blades[J]. Journal of the Aeronautical Sciences, 1947, 14(1): 42-50.
[99] Johnson W, Mayne R. Effect of second-harmonic flapping on the stresses of a hinged rotor blade, Goodyear Aircraft Report No R-107-4 Part III[R]. Akron Ohio: Goodyear Aircraft Corporation, 1946.
[100] Di Prima R C, Handelman G H. Vibrations of twisted beams[J]. Quarterly of Applied Mathematics, 1954, XII (3): 241-259.
[101] Shulman Y. Stability of a flexible helicopter rotor blade in forward flight[J]. Journal of the Aeronautical Sciences, 1956, 23(7): 663-670.
[102] Houbolt J C, Brooks G W. Differential equations of motion for combined flapwise bending, chordwise bending, and torsion of twisted non-uniform rotor blade, NASA 1346[R]. Hampton: NASA Langley Aeronautical Laboratory, 1958.
[103] Hodges D H, Dowell E H. Nonlinear equations of motion for the elastic bending and torsion of twisted non-uniform rotor blades, NASA/TN D-7818[R]. Moffett Field, CA: NASA Ames Research Center, 1974.
[104] Friedmann P P, Tong P. Dynamic nonlinear elastic stability of helicopter rotor blades in hover and in forward flight, NASA/CR-114485[R]. Moffett Field, CA: NASA Ames Research Center, 1972.
[105] Johnson W. Aeroelastic analysis for rotorcraft in flight or in a wind tunnel, NASA/TN D-8515[R]. Moffett Field, CA: NASA Ames Research Center, 1977.
[106] Straub F K, Sangha K B, Panda B. Advanced finite element modeling of rotor blade aeroelasticity[J]. Journal of the American Helicopter Society, 1994, 39(2): 56-68.
[107] Zhang C L, Yu L. Study on aeroelastic stability of rotor blade in hover[J]. Journal of Aerospace Power, 1995, 10(2): 117-120 (in Chinese). 张呈林, 余林. 悬停状态下旋翼桨叶气动弹性稳定性分析及试验[J]. 航空动力学报, 1995, 10(2): 117-120.
[108] Yang W D, Deng J H. Aeroelastic stability analysis of helicopter rotor blade with swept tips[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2003, 35(3): 248-252 (in Chinese). 杨卫东, 邓景辉. 直升机后掠桨尖旋翼气弹稳定性分析[J]. 南京航空航天大学学报, 2003, 35(3): 248-252.
[109] Hodges D H. A mixed variational formulation based on exact intrinsic equations for dynamics of moving beams[J]. International Journal of Solids and Structures, 1990, 26(11): 68-82.
[110] Berdichevsky V L. On the energy of an elastic rod[J]. Applied Mathematics and Mechanics, 1981, 45(4): 518-529.
[111] Hodges D H, Atilgan A R, Cesnik C E S, et al. On a simplified strain energy function for geometrically nonlinear behavior of anisotropic beams[J]. Composites Engineering, 1992, 2(5-7): 513-526.
[112] Yu W B, Volovoi V V, Hodges D H, et al. Validation of the variational asymptotic beam sectional analysis[J]. AIAA Journal, 2002, 40(10): 2105-2112.
[113] Yu W B, Hodges D H. Generalized timoshenko theory of the variational asymptotic beam sectional analysis[J]. Journal of the American Helicopter Society, 2005, 50(1): 46-55.
[114] Johnson W. Rotorcraft dynamics models for a comprehensive analysis[C]//54th Annual Forum of the American Helicopter Society. Washington, D. C.: American Helicopter Society, 1998: 452-471.
[115] Saberi H, Khoshlahjeh M, Ormiston R A, et al. Overview of RCAS and application to advanced rotorcraft problems[C]//AHS 4th Decennial Specialist's Conference on Aeromechanics. Washington, D.C.: American Helicopter Society, 2004: 105-121.
[116] Yu Z H, Yang W D, Deng J H, et al. Model of rotor aeroelastic stability using dynamics of flexible multibody systems[J]. Journal of Aerospace Power, 2012, 27(5): 1122-1130 (in Chinese). 虞志浩, 杨卫东, 邓景辉, 等. 基于多体动力学的旋翼模型与气弹稳定性[J]. 航空动力学报, 2012, 27(5): 1122-1130.
[117] Gerstenberger W, Wood E R. Analysis of helicopter aeroelastic characteristics in high-speed flight[J]. AIAA Journal, 1964, 1(10): 2366-2381.
[118] Staley J A, Sciarra J J. Coupled rotor/airframe vibration prediction methods, NASA/SP-352[R]. Moffett Field, CA: NASA Ames Research Center, 1974: 81-90.
[119] Hsu T K, Peters D A. Coupled rotor/airframe vibration analysis by a combined harmonic-balance impedance-matching method[J]. Journal of the American Helicopter Society, 1982, 27(1): 25-34.
[120] Gable R, Sankewitsch V. Rotor-fuselage coupling by impedance[C]//42nd Annual Forum of the American Helicopter Society. Washington, D.C.: American Helicopter Society, 1986: 1-11.
[121] Friedmann W. Formulation of coupled rotor/fuselage equations of motion[J]. Vertica, 1979, 3(3): 245-271.
[122] Fledel S. Coupled rotor/airframe vibration analysis[D]. Maryland: University of Maryland, 1989.
[123] Cheng Y M, Ren G X, Zheng Z G. Aeroelastic response analysis of a coupled rotor/fuselage helicopter system (I) modeling of the rotary-wing system[J]. Chinese Journal of Applied Mechanics, 1999, 16(1): 33-39 (in Chinese). 程永明, 任革学, 郑兆昌. 直升机旋翼/机身耦合系统气弹响应分析(一)旋翼系统的建模[J]. 应用力学学报, 1999, 16(1): 33-39.
[124] Cheng Y M, Ren G X, Zheng Z C. Aeroelastic response analysis of a coupled rotor/fuselage system (II) solution of the equations[J]. Chinese Journal of Applied Mechanics, 1999, 16(2): 32-37 (in Chinese). 程永明, 任革学, 郑兆昌. 直升机旋翼/机身耦合系统气弹响应分析(二)方程的求解[J]. 应用力学学报, 1999, 16(2): 32-37.
[125] Wang H W, Gao Z, Zheng Z C. Aeroelastic response and stability of helicopter rotor blades in forward flight[J]. Journal of Vibration Engineering,1999,12(4): 521-528 (in Chinese). 王浩文, 高正, 郑兆昌. 前飞状态下直升机旋翼系统气弹响应及稳定性分析[J]. 振动工程学报, 1999, 12(4): 521-528.
[126] Hu X Y, Han J L. Nonlinear aeroelastic coupled trim and stability analysis of rotor-fuselage[J]. Applied Mathematics and Mechanics, 2010, 31(2): 218-226.
[127] Yeo H , Inderjit C. Coupled rotor/fuselage vibration analysis for teetering rotor and test data comparison[J]. Journal of Aircraft, 2001, 38(1): 111-121.
[128] Zheng Z C, Ren G X, Cheng Y M. Aeroelastic response of a coupled rotor/fuselage system in hovering and forward flight[J]. Archive of Applied Mechanics, 1999, 69(1): 68-82.
[129] Chiu T, Friedmann P P. A coupled helicopter rotor/fuselage aeroelastic response model for ACSR[C]//AIAA Conference. Reston: AIAA, 1995: 574-600.
[130] Cribbs R C, Friedmann P P, Chiu T. Coupled helicopter rotor/flexible fuselage aeroelastic model for control of structural response[J]. AIAA Journal, 2000, 38(10): 1777-1788.
[131] Chen Q L, Han J L. CFD/CSD method for coupled rotor/fuselage vibration analysis[J]. Journal of Vibration Engineering, 2014, 27(3): 370-376 (in Chinese). 陈全龙, 韩景龙. 旋翼/机身耦合问题的CFD/CSD分析方法[J]. 振动工程学报, 2014, 27(3): 370-376.
[132] Tung C, Caradonna F X, Johnson W. The prediction of transonic flows on an advancing rotor[J]. Journal of the American Helicopter Society, 1986, 32(7): 4-9.
[133] Yamauchi G K, Heffernan R M, Gaubert M. Correlation of SA349/2 helicopter flight test data with a comprehensive rotorcraft model[J]. Journal of the American Helicopter Society, 1988, 33(2): 31-42.
[134] Kim K C, Desopper A, Chopra I. Blade response calculations using three-dimensional aerodynamic modeling[J]. Journal of the American Helicopter Society, 1991, 36(1): 68-77.
[135] Bauchau O A, Ahmad J U. Advanced CFD and CSD methods for multidisciplinary applications in rotorcraft problems, AIAA-1996-4151[R]. Reston: AIAA, 1996.
[136] Altmikus A R M, Wagner S, Beaumier P, et al. A comparison: weak versus strong modular coupling for trimmed aeroelastic rotor simulations[C]// Proceedings of the 58th Annual Forum of the American Helicopter Society. Washington, D.C.: American Helicopter Society, 2002: 697-710.
[137] Biedron R T, Lee-Rauch E M. Rotor airloads prediction using unstructured meshes and loose CFD/CSD coupling, AIAA-2008-7341[R]. Reston: AIAA, 2008.
[138] Dimanlig A C. Saberi H A, Meadowcroft E T, et al. CFD/CSD coupling and trim of the CH-47 helicopter[C]// 9th Symposium on Overset Composite Grid and Solution Technology. Washington, D.C.: American Helicopter Society, 2008: 1-27.
[139] Bhagwat M J, Ormiston R A, Saberi H A. Application of computational fluid dynamics/computational structural dynamics coupling for analysis of rotorcraft airloads and blade loads in maneuvering flight[J]. Journal of the American Helicopter Society, 2012, 57(3): 71-85.
[140] Jain R, Yeo H,Inderjit C. Computational fluid dynamics-computational structural dynamics analysis of active control of helicopter rotor for performance improvement[J]. Journal of the American Helicopter Society, 2010, 55(4): 47-59.
[141] Yeo H, Potsdam M, Ormiston R A. Rotor aeroelastic stability analysis using coupled computational fluid dynamics/ computational structural dynamics[J]. Journal of the American Helicopter Society, 2011, 56(4): 35-43.
[142] Bhagwat M J, Ormiston R A, Saberi H A, et al. Application of computational fluid dynamics/computational structural dynamics coupling for analysis of rotorcraft airloads and blade loads in maneuvering flight[J]. Journal of the American Helicopter Society, 2012, 57(3): 1-19.
[143] Abras J N, Eric L C, Smith M J. Computational fluid dynamics - computational structural dynamics rotor coupling using an unstructured Reynolds-averaged, Navier-Stokes methodology[J]. Journal of the American Helicopter Society, 2012, 57(1): 1-14.
[144] Wang H. Numerical simulation for the flowfield of new-tip rotors with effect of blade elasticity[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010 (in Chinese). 王海. 计入桨叶结构弹性的新型桨尖旋翼流场数值模拟[D]. 南京: 南京航空航天大学, 2010.
[145] Chen L. Numerical simulation of rotor aeroelastic using CFD/ CSD coupling[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011 (in Chinese). 陈龙. 基于CFD/CSD耦合的旋翼气动弹性数值模拟[D]. 南京: 南京航空航天大学, 2011.
[146] Chen Q L. Research on helicopter dynamics using CFD/CSD coupling[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014 (in Chinese). 陈全龙. 基于CFD/CSD耦合的直升机动力学问题研究[D]. 南京: 南京航空航天大学, 2014.
[147] Friedmann P P. Helicopter vibration reduction using structural optimization with aeroelastic/ multidisciplinary constraints - a survey[J]. Journal of Aircraft, 1991, 28(1): 8-21.
[148] Ranjan G, Inderjit C. Aeroelastic optimization of a helicopter rotor to reduce vibration and dynamic stresses[J]. Journal of Aircraft, 1996, 12(4): 808-815.
[149] Yuan K A, Friedmann P P. Aeroelasticity and structural optimization of composite helicopter rotor blades with swept tips, NASA-CR-4665[R]. Hampton: NASA Langley Research Center, 1995.
[150] Yuan K A, Friedmann P P. Structural optimization for vibration loads reduction of composite helicopter rotor blades with advanced geometry tips[J]. Journal of the American Helicopter Society, 1998, 43(3): 246-256.
[151] Gu Y X, Liu S T, Guan Z Q, et al. Design-oriented dynamic design optimization of composite rotor blades[J]. Acta Aeronautica et Astronautica Sinica, 1998, 19(3): 38-41 (in Chinese). 顾元宪, 刘书田, 关振群, 等. 面向设计的复合材料旋翼桨叶动力学优化设计[J]. 航空学报, 1998, 19(3): 38-41.
[152] Xiang J W, Zhang X G. Aeroelastic optimization of a helicopter rotor with single-cell composite blades for vibration reduction[J]. Journal of Aerospace Power, 1999, 14(2): 212-215 (in Chinese). 向锦武, 张晓谷. 直升机旋翼桨叶气弹优化减振设计方法[J]. 航空动力学报, 1999, 14(2): 212-215.
[153] Ganguli R, Chopra I. Aeroelastic optimization of a helicopter rotor with composite coupling[J]. Journal of Aircraft, 1995, 32(6): 1326-1334.
[154] Guo J X, Xiang J W. Composite rotor blade design optimization for vibration reduction with aeroelastic constraints[J]. Journal of Aeronautics, 2004, 17(3): 152-158.
[155] Wang H Z. The helicopter rotor aeroelastic research of multi-objective vibration reduction optimization by modal shaping[D]. Nanjing: Nanjing University of Aeronantics and Astronantics, 2010 (in Chinese). 王红州. 基于模态修型的旋翼气弹动力学多目标减振优化研究[D]. 南京:南京航空航天大学, 2010.
[156] Bao J S, Nagaraj V T, Inderjit C, et al. Development of mach scale rotors with tailored composite coupling for vibration reduction[J]. Journal of Aircraft, 2006, 43(4):922-931.
[157] Kim D K, Lee I, Song K W, et al. Experimental study on dynamic characteristics improvement of helicopter hingeless rotor system[J]. Journal of Aircraft, 2013, 50(5): 1333-1339.
[158] Friedmann P P, Millott T A. Vibration reduction in rotorcraft using active control: a comparison of various approaches[J]. Journal of Guidance, Control, and Dynamics, 1995, 18(4): 664-673.
[159] Splettstoesser W R, Kube R, Wagner W, et al. Key results from a higher harmonic control aeroacoustic rotor test (HART)[J]. Journal of the American Helicopter Society, 1997, 42(1): 58-78.
[160] Patt D, Liu L, Chandrasekar J, et al. Higher-harmonic-control algorithm for helicopter vibration reduction revisited[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(5): 918-930.
[161] Yeo H, Romander E A, Norman T R. Investigation of rotor performance and loads of a UH-60A individual blade control system[J]. Journal of the American Helicopter Society, 2011, 56(4): 1-18.
[162] Theodore C R, Tischler M B. Development and operation of an automatic rotor trim control system for the UH-60 individual blade control wind tunnel test[J]. Journal of the American Helicopter Society, 2013, 58(4): 1-13.
[163] Booth J, Earl R, Wilbur M L, et al. Acoustic aspects of active-twist rotor control[J]. Journal of the American Helicopter Society, 2004, 49(1): 3-10.
[164] Shin S, Cesnik C E S, Hall S R. Closed-loop control test of the NASA/Army/MIT active twist rotor for vibration reduction[J]. Journal of the American Helicopter Society, 2005, 50(2): 178-194.
[165] Bernhard A P F, Wong J. Wind-tunnel evaluation of a sikorsky active rotor controller implemented on the NASA/ARMY/MIT active twist rotor[J]. Journal of the American Helicopter Society, 2005, 50(1): 65-81.
[166] Cribbs R C, Friedmann P P, Chiu T. Coupled helicopter rotor/flexible fuselage aeroelastic model for control of structural response[J]. AIAA Journal, 2000, 38(10): 1777-1788.
[167] Song L S, Xia P Q. Active control of helicopter structural response using piezoelectric stack actuators[J]. Journal of Aircraft, 2013, 50(2): 659-663.
[168] Shen J W, Yang M, Inderjit C. Swashplateless helicopter rotor with trailing-edge flaps for flight and vibration control[J]. Journal of Aircraft, 2006, 43(2): 346-352.
[169] Viswamurthy S R, Ganguli R. Using the complete authority of multiple active trailing-edge flaps for helicopter vibration control[J]. Journal of Vibration and Control, 2008, 14(8): 1175-1199.
[170] Viswamurthy S R, Ganguli R. Effect of piezoelectric hysteresis on helicopter vibration control using trailing-edge flaps[J]. Journal of Guidance, Control and Dynamics, 2006, 29(5): 1201-1209.
[171] Muir E R, Liu L, Friedmann P P, et al. Effect of piezoceramic actuator hysteresis on helicopter vibration and noise reduction[J]. Journal of Guidance, Control and Dynamics, 2012, 35(4): 1299-1311.
[172] Roget B, Inderjit C. Wind-tunnel testing of rotor with individually controlled trailing-edge flaps for vibration reduction[J]. Journal of Aircraft, 2008, 45(3): 868-879.
[173] Zhang Z, Huang W J, Yang W D. Design analysis and test of smart rotor blades model with trailing edge flaps[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2011, 43(3): 296-301 (in Chinese). 张柱, 黄文俊, 杨卫东. 后缘小翼型智能旋翼桨叶模型设计分析与试验研究[J]. 南京航空航天大学学报, 2011, 43(3): 296-301.
[174] Wang R, Xia P Q. Control of helicopter rotor blade dynamic stall and hub vibration loads by multiple trailing edge flaps[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(5): 1083-1091 (in Chinese). 王荣, 夏品奇. 多片后缘小翼对直升机旋翼桨叶动态失速及桨毂振动载荷的控制[J]. 航空学报, 2013, 34(5): 1083-1091.
[175] Liu L, Padthe A K, Friedmann P P. Computational study of microflaps with application to vibration reduction in helicopter rotors[J]. AIAA Journal, 2011, 49(7): 1450-1465.
[176] Palacios J, Kinzel M, Overmeyer A. Active gurney flaps: their application in a rotor blade centrifugal field[J]. Journal of Aircraft, 2014, 51(2): 473-489.
[177] Reed W H. Propeller-rotor whirl flutter: a state-of-the-art review[J]. Journal of Sound and Vibration, 1966, 4(3): 526-544.
[178] Kvaternik R G . A review of some tilt-rotor aeroelastic research at NASA-Langley[J]. Journal of Aircraft, 1976, 13(5): 111-121.
[179] Johnson W. Recent developments in the dynamics of advanced rotor systems, NASA/TM-86669[R]. Moffett Field, CA: NASA Ames Research Center, 1985.
[180] Venkat S, Inderjit C. Formulation of a comprehensive aeroelastic analysis for tiltrotor aircraft, AIAA-1996-1546[R]. Reston: AIAA, 1996.
[181] Acree C W, Peyran R J, Johnson W. Rotor design options for improving tiltrotor whirl-flutter stability margins[J]. Journal of the American Helicopter Society, 2001, 46(2): 87-95
[182] Beerinder S, Inderjit C. Whirl flutter stability of two-bladed proprotor/pylon systems in high speed flight[J]. Journal of the American Helicopter Society, 2003, 48(2): 99-107.
[183] Dong L H, Yang W D, Xia P Q. Multi-body aeroelastic stability analysis of tiltrotor aircraft in helicopter mode[J]. Transactions of Nanjing University of Aeronautics & Astronautics, 2006, 38(2): 161-167.
[184] Xue L P, Zhang C L. Modeling study on tilt-rotor’s aeroelastic stability in cruise flight[J]. Journal of Aerospace Power, 2009, 24(2): 225-261 (in Chinese).
薛立鹏, 张呈林. 前飞状态倾转旋翼机气弹稳定性建模[J]. 航空动力学报, 2009, 24(2): 225-261.
[185] Yang C M, Xia P Q. Aeroelastic stability of wing/pylon/rotor coupled system for tiltrotor aircraft in forward flight[J]. Science in China Series: Technological Sciences, 2011, 41(10): 1322-1328 (in Chinese).
杨朝敏, 夏品奇, 倾转旋翼机前飞时机翼/短舱/旋翼耦合系统气弹稳定性分析[J]. 中国科学: 技术科学, 2011, 41(10): 1322-1328.
[186] Gordon L J, Rosen K M. Challenges in the aerodynamic optimization of high-efficiency proprotors[J]. Journal of the American Helicopter Society, 2011, 56(4): 44-54.
[187] Acree C W. Impact of aerodynamics and structures technology on heavy lift tiltrotors[J]. Journal of the American Helicopter Society, 2010, 55(1): 12-21.
[188] Jenney D S. ABC aircraft development status[C]// 6th European Rotorcraft and powered Lift Aircraft Forum. Bristol England: Bristol University, 1980: 1-19.
[189] Ruddell A J. Advancing blade concept (ABCTM) Development[J]. Journal of the American Helicopter Society, 1977, 22(1): 13-23.
[190] Ruddell A J, Macrino J A. Advancing blade concept (ABC) high speed development[C]// 36th Annual National Forum of the American Helicopter Society. Washington, D. C.: American Helicopter Society, 1980: 1-24.
[191] Fort F F. Performance and loads data from a wind tunnel test of a full-scale, coaxial, hingeless rotor helicopter, NASA/TM-81329[R]. Moffett Field, CA: NASA Ames Research Center, 1981.
[192] Robert K B. The ABC rotor-a history perspective[C]//60th Annual Forum of the American Helicopter Society, Washington, D.C.: American Helicopter Society, 2004: 1-47.
[193] Blackwell R, Millott T. Dynamics design characteristics of the Sikorsky X2 technology demonstrator aircraft[C]// 64th Annual Forum of the American Helicopter Society, Washington, D.C.:American Helicopter Society, 2008: 886-899.
[194] Walsh D, Weiner S, Arifian K, et al. High airspeed testing of the sikorsky X2 technology demonstrator[C]// 67th Annual Forum of the American Helicopter Society International. Washington, D.C.: American Helicopter Society, 2011: 1-17.
[195] Ashish B. Aerodynamic design of the X2 technology demonstrator main rotor blade[C]// 64th Annual Forum of the American Helicopter Society. Washington, D.C.: American Helicopter Society, 2008: 1-16.
[196] Kim H W, Adam R, Kenyon K, et al. Interactional aerodynamics and acoustics propeller-augmented compound coaxial helicopter[C]//American Helicopter Society Specialists Conference on Aeromechanics. Washington, D.C.: American Helicopter Society, 2008: 1-17.
[197] Chen Q L, Han J L, Yun H W. Study on ABC rotor dynamics analysis method[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(9): 2451-2460 (in Chinese).
陈全龙, 韩景龙, 员海玮. ABC旋翼动力学分析方法研究[J]. 航空学报, 2014, 35(9): 2451-2460. |