航空学报 > 2015, Vol. 36 Issue (4): 1034-1055   doi: 10.7527/S1000-6893.2014.0253

直升机的气动弹性问题

韩景龙1, 陈全龙2, 员海玮1   

  1. 1. 南京航空航天大学 机械结构力学及控制国家重点实验室, 南京 210016;
    2. 中国直升机设计研究所, 景德镇 333001
  • 收稿日期:2014-09-01 修回日期:2014-09-10 出版日期:2015-04-15 发布日期:2014-10-31
  • 通讯作者: 韩景龙Tel.:025-84896484 E-mail: hjlae@nuaa.edu.cn E-mail:hjlae@nuaa.edu.cn
  • 作者简介:韩景龙 男, 博士, 教授, 博士生导师。主要研究方向: 气动弹性力学,复杂结构动力学与非线性动力学。Tel: 025-84896484 E-mail: hjlae@nuaa.edu.cn;陈全龙 男, 博士, 工程师。主要研究方向: 直升机旋翼/机体耦合动力学。Tel: 0798-8465751 E-mail: cql_nuaa@163.com;员海玮 男, 博士, 副教授。主要研究方向: 气动弹性力学。Tel:025-84896484 E-mail: yhwae@nuaa.edu.cn
  • 基金资助:

    国家自然科学基金(11472133,11102085)

Aeroelasticity of helicopters

HAN Jinglong1, CHEN Quanlong2, YUN Haiwei1   

  1. 1. State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    2. China Helicopter Research and Development Institute, Jingdezhen 333001, China
  • Received:2014-09-01 Revised:2014-09-10 Online:2015-04-15 Published:2014-10-31
  • Supported by:

    National Natural Science Foundation of China (11472133,11102085)

摘要:

直升机的气动弹性问题与固定翼飞机不同,不仅要考虑单片桨叶,更要将旋翼视为一个整体,考虑其动态入流、尾迹影响以及旋翼与机身之间的相互耦合等。就单片桨叶而言,在结构动力学上,需要考虑离心力场、几何非线性以及桨叶的非线性挥舞-摆振-扭转耦合;在气动力上,需要考虑动态入流以及桨尖处可能的失速效应,本质上属于非线性气动弹性力学范畴。由于旋翼气动力通常是以周期形式通过旋翼轴传给机身,并引起机身振动,而机身运动又通过改变桨叶根部形态反过来影响旋翼的气动弹性特性,这种旋翼/机身耦合问题,也是近年来直升机气动弹性问题研究中的重要方向和热点之一。此外,随着旋翼流场数值分析方法的日趋成熟,采用动态重叠网格或滑移网格方法来实现桨叶运动,并通过动网格技术来实现桨叶的弹性变形,从而实现弹性旋翼流场的数值模拟,目前正呈现出勃勃生机,成为直升机气动弹性研究的又一重要方向和热点。随着各种新构型直升机的相继出现,如倾转旋翼机、前行桨叶概念旋翼(ABC)直升机和复合式直升机等,也带来了新的气动弹性问题。不断发现问题、解决问题,推动本学科持续发展,永远是气动弹性工作者终身奋斗的目标。

关键词: 直升机, 气动弹性, 旋翼动力学, 旋翼/机身耦合, 振动控制

Abstract:

The aeroelastic problems of helicopter are different from those of fixed wing aircraft. Not only the single blade is considered and analyzed, but also the rotor is considered as an integrated aeroelastic system, for which the dynamic inflow, wake effects and interactions between rotor and fuselage are all considered in the analysis process. For a single blade, the eccentric field and geometrical nonlinearities, as well as nonlinear flap-lag-twist interactions caused by motion involvement should be considered in structural dynamics modeling; while dynamic inflow and wing tip stall effect should be considered in aerodynamic analysis. Therefore, those problems essentially belong to the category of nonlinear aeroelasticity. Furthermore, the airloads of rotor are transferred to fuselage via rotor shaft in a periodic way and cause vibrations and motions of fuselage; while the motions of fuselage change the root conditions of blades and affect rotor aeroelastic characteristics. Such rotor/fuselage interaction problem becomes one of the important research directions and hot spots in helicopter aeroelasticity in recent years. The numerical methods of rotor flow field simulation are becoming mature gradually, among which, the overset grid and sliding mesh techniques are used to simulate the rigid motion of blades, and the dynamic mesh technique is used to simulate the elastic deformation. Thus, the flow field simulation of elastic rotor can be implemented with enough accuracy and efficiency. These methods are showing thriving vitality and becoming another important research direction of helicopter aeroelasticity. New concepts and configurations, such as tiltrotor, advancing blade concept (ABC) and compound helicopter, bring new aeroelastic problems. Discovering and solving problems constantly to promote the discipline development are the lifelong objectives of aeroelastician forever.

Key words: helicopter, aeroelastic, rotor dynamics, rotor/fuselage interaction, vibration control

中图分类号: