[1] 刘荣强, 田大可, 邓宗全. 空间可展开天线结构的研究现状与展望[J]. 机械设计, 2010, 27(9): 1-10. LIU R Q, TIAN D K, DENG Z Q. Research actuality and prospect of structure for space deployable antenna[J]. Journal of Machine Design, 2010, 27(9): 1-10 (in Chinese).
[2] 刘明治, 高桂芳. 空间可展开天线结构研究进展[J]. 宇航学报, 2003, 24(1): 82-87. LIU M Z, GAO G F. Advances in the study on structure for space deployable antenna[J]. Journal of Astronautics, 2003, 24(1): 82-87 (in Chinese).
[3] CHEN G L, WANG H, LIN Z Q. A unified approach to the accuracy analysis of planar parallel manipulators both with input uncertainties and joint clearance[J]. Mechanism & Machine Theory, 2013, 64(6): 1-17.
[4] MERLET J P. Computing the worst case accuracy of a PKM over a workspace or a trajectory[C]//5th Chemnitzer Parallel Kinematic Seminar. Zwickau: Verlag Wissenschaftliche Scripten, 2006.
[5] SUN D Y, CHEN G P. Kinematic accuracy analysis of planar mechanisms with clearance involving random and epistemic uncertainty[J]. European Journal of Mechanics—A/Solids, 2016, 58: 256-261.
[6] LI X, DING X L, CHIRIKJIAN G S. Analysis of angular-error uncertainty in planar multiple-loop structures with joint clearances[J]. Mechanism & Machine Theory, 2015, 91: 69-85.
[7] 姚泽良, 李宝平, 周雪峰. 结构可靠度分析的一次二阶矩方法与二次二阶矩方法[J]. 西北水力发电, 2005, 21(3): 20-23. YAO Z L, LI B P, ZHOU X F. Simple and quadratic of the two ranks quadrature of the structure reliability[J]. Journal of Northwest Hydroelectric Power, 2005, 21(3): 20-23 (in Chinese).
[8] 陈胜军, 贾方. 曲柄滑块机构运动精度的概率分析与计算[J]. 机械设计与制造, 2013(7): 203-206. CHEN S J, JIA F. Probability analysis and calculation of kinematic accuracy for slider-crank mechanism[J]. Machinery Design & Manufacture, 2013(7): 203-206 (in Chinese).
[9] PADMANABHAN D, AGARWAL H, RENAUD J E, et al. A study using Monte Carlo simulation for failure probability calculation in reliability-based optimization[J]. Optimization & Engineering, 2006, 7(3): 297-316.
[10] 吴建云, 王春洁, 汪瀚. 基于蒙特卡洛法的卫星天线板展开精度分析[J]. 航天返回与遥感, 2013, 34(6): 89-94. WU J Y, WANG C J, WANG H. Accuracy analysis of satellite antenna plate deployment based on Monte Carlo method[J]. Spacecraft Recovery & Remote Sensing, 2013, 34(6): 89-94 (in Chinese).
[11] 彭茂林, 杨自春, 曹跃云, 等. 基于响应面法的可靠性稳健设计优化[J]. 航空动力学报, 2013, 28(8): 1784-1790. PENG M L, YANG Z C, CAO Y Y, et al. Reliability robust design optimization based on response surface method[J]. Journal of Aerospace Power, 2013, 28(8): 1784-1790 (in Chinese).
[12] 刘成立, 吕震宙. 结构可靠性分析中考虑高次项修正的组合响应面法[J]. 航空学报, 2006, 27(4): 594-599. LIU C L, LV Z Z. Response surface combination improved by high order term for structure reliability analysis[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(4): 594-599 (in Chinese).
[13] RAHMAN S, XU H. A univariate dimension-reduction method for multi-dimensional integration in stochastic mechanics[J]. Probabilistic Engineering Mechanics, 2004, 19(4): 393-408.
[14] ZHANG X F, PANDEY M D, ZHANG Y M. A numerical method for structural uncertainty response computation[J]. Science China Technological Sciences, 2011, 54(12): 3347-3357.
[15] WANG J G, ZHANG J F, DU X P. Hybrid dimension reduction for mechanism reliability analysis with random joint clearances[J]. Mechanism & Machine Theory, 2011, 46(10): 1396-1410.
[16] 孟广伟, 冯昕宇, 李锋,等. 基于降维算法和Edgeworth级数的结构可靠性分析[J]. 北京航空航天大学学报, 2016, 42(3): 421-425. MENG G W, FENG X Y, LI F, et al. Structural reliability analysis based on dimensionality reduction and Edgeworth series[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(3): 421-425 (in Chinese).
[17] EARLES S W E, WU C L S. Motion analysis of rigid-link mechanism with clearance at a bearing using Lagrangian mechanics and digital computation[C]//Conference on Mechanisms. London: Institution of Mechanical Engineers, 1972.
[18] LEE S J, GILMORE B J. The determination of the probabilistic properties of velocities and accelerations in kinematic chains with uncertainty[J]. Journal of Mechanical Design, 1991,113(1): 84-90.
[19] BLOZNELIS M. An Edgeworth expansion for studentized finite population statistics[J]. Acta Applicandae Mathematicae, 2003, 78(1): 51-60.
[20] 张义民, 贾敬存, 黄贤振. 基于Edgeworth级数法和数据包络分析法的数控车床可靠性分配[J]. 机械强度, 2016(1): 69-73. ZHANG Y M, JIA J C, HUANG X Z. Reliability allocation of CNC lathe based on Edgeworth series method and date envelopment analysis[J]. Journal of Mechanical Strength, 2016(1): 69-73 (in Chinese).
[21] 叶江水, 王仲刚, 陈友良, 等. 基于前四阶矩的非高斯响应概率密度函数逼近方法研究[J]. 后勤工程学院学报, 2010, 26(1): 12-16. YE J S, WANG Z G, CHEN Y L, et al. Research on approximate methods of non-Gaussian probability density function based on the first four moments of the response[J]. Journal of Logistical Engineering University, 2010, 26(1): 12-16 (in Chinese).
[22] 刘彦明. 基于四阶矩的机械可靠性相关研究[D]. 太原: 太原科技大学, 2011: 23-38. LIU Y M. Research on mechanical reliability based on the four order moment[D]. Taiyuan: Taiyuan University of Science & Technology, 2011: 23-38 (in Chinese). |