[1] Anderson J. McGraw-Hill series in aeronautical and aerospace engineering[M]. [s.l.]: McGraw-Hill, 1989.
[2] Sun M. Insect flight dynamics: stability and control[J]. Reviews of Modern Physics, 2014, 86(2): 615.
[3] Wagner H. Über die Entstehung des dynamischen auftriebes von tragflügeln[J]. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 1925, 5(1): 17-35.
[4] Walker P B. Experiments on the growth of circulation about a wing and an apparatus for measuring fluid motion[J]. Rep. Memo. Aeronaut. Res. (Great Britain), 1931, 1402.
[5] Pullin D I. The large-scale structure of unsteady self-similar rolled-up vortex sheets[J]. Journal of Fluid Mechanics, 1978, 88(3): 401-430.
[6] Graham J M R. The lift on an aerofoil in starting flow[J]. Journal of Fluid Mechanics, 1983, 133: 413-425.
[7] Pitt Ford C W, Babinsky H. Lift and the leading-edge vortex[J]. Journal of Fluid Mechanics, 2013, 720: 280-313.
[8] Dickinson M H, Gotz K G. Unsteady aerodynamic performance of model wings at low Reynolds numbers[J]. The Journal of Experimental Biology, 1993, 174(1): 45-64.
[9] Xia X, Mohseni K. Lift evaluation of a two-dimensional pitching flat plate[J]. Physics of Fluids (1994-present), 2013, 25(9): 091901.
[10] Pullin D I, Wang Z. Unsteady forces on an accelerating plate and application to hovering insect flight[J]. Journal of Fluid Mechanics, 2004, 509: 1-21.
[11] Li J, Wu Z N. Unsteadylift for the wagner problem in the presence of additional leading/trailing edge vortices[J]. Journal of Fluid Mechanics, 2015, 769: 182-217.
[12] Ashley H, Zartarian G. Piston theory-a new aerodynamic tool for the aeroelastician[J]. Journal of the Aeronautical Sciences (Institute of the Aeronautical Sciences), 1956, 23(12): 1109-1118.
[13] Liu D D, Yao Z X, Sarhaddi D, et al. From piston theory to a unified hypersonic-supersonic lifting surface method[J]. Journal of Aircraft, 1997, 34(3): 304-312.
[14] Oppenheimer M W, Skujins T, Bolender M A, et al. A flexible hypersonic vehicle model developed with piston theory, AIAA-2007-6396[R]. Reston: AIAA, 2007.
[15] Lomax H, Heaslet M A, Fuller F B, et al. Two-and three-dimensional unsteady lift problems in high-speed flight, NAGA 1077[R]. Washington, D.C.: NACA, 1952.
[16] Leishman J G. Validation of approximate indicial aerodynamic functions for two-dimensional subsonic flow[J]. Journal of Aircraft, 1988, 25(10): 914-922.
[17] Leishman J G. Indicial lift approximations for two-dimensional subsonic flow as obtained from oscillatory measurements[J]. Journal of Aircraft, 1993, 30(3): 340-351.
[18] Leishman J G. Unsteady lift of a flapped airfoil by indicial concepts[J]. Journal of Aircraft, 1994, 31(2): 288-297.
[19] Hariharan N, Leishman J G. Unsteady aerodynamics of a flapped airfoil in subsonic flow by indicial concepts[J]. Journal of Aircraft, 1996, 33(5): 855-868.
[20] Sitaraman J, Baeder J D. Computational-fluid-dynamics-based enhanced indicial aerodynamic models[J]. Journal of Aircraft, 2004, 41(4): 798-810.
[21] Jose A I, Leishman J G, Baeder J D. Unsteady aerodynamic modeling with time-varying free-stream mach numbers[J]. Journal of The American Helicopter Society, 2006, 51(4): 299-318.
[22] Wu Z N, Bai C Y, Li J, et al. Analysis of flow characteristics for hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 58-85 (in Chinese). 吴子牛, 白晨媛, 李娟, 等. 高超声速飞行器流动特征分析[J]. 航空学报, 2015, 36(1): 58-85.
[23] Bai C Y, Li J, Wu Z N. Generalized Kutta-Joukowski theorem for multi-vortex and multi-airfoil flow with vortex production-A general model[J]. Chinese Journal of Aeronautics, 2014, 27(5): 1037-1050.
[24] Li J, Wu Z N. A two-dimensional multibody integral approach for forces in inviscid flow with free vortices and vortex production[J]. Journal of Fluids Engineering, 2015, 137 (021205-1).
[25] Bai C Y, Wu Z N. Generalized Kutta-Joukowski theorem for multi-vortices and multi-airfoil flow (alumped vortex model)[J]. Chinese Journal of Aeronautics, 2014, 27(1): 34-39.
[26] Bai C Y, Li J, Wu Z N. Unsteady lift for impulsively started transonic/supersonic flow[C]//Proceedings of The ASME 2015 International Mechanical Engineering Congress & Exposition. to appear in, 2015.
[27] Li J, Bai C Y, Wu Z N. Unsteady lift for the wagner problem of starting flow at large angle of attack[C]//Proceedings of The ASME 2015 International Mechanical Engineering Congress & Exposition. to appear in, 2015.
[28] Gaunaa M, Bergami L, Heinz J. Indicial response function for finite-thickness airfoils, a semi-empirical approach, AIAA-2011-0542[R]. Reston: AIAA, 2011.
[29] Bisplinghoff R L, Ashley H, Halfman R L. Aeroelasticity[M]. [s.l.]: Dover Publications, Inc, 1996. |