航空学报 > 2013, Vol. 34 Issue (9): 2230-2240   doi: 10.7527/S1000-6893.2013.0306

钛合金TC4高速切削刀具磨损的有限元仿真

陈燕1, 杨树宝2, 傅玉灿1, 徐九华1, 苏宏华1   

  1. 1. 南京航空航天大学 机电学院, 江苏 南京 210016;
    2. 安徽工业大学 机械工程学院, 安徽 马鞍山 243032
  • 收稿日期:2013-04-12 修回日期:2013-06-13 出版日期:2013-09-25 发布日期:2013-06-21
  • 通讯作者: 陈燕,Tel.:025-84895930 E-mail:ninaych@nuaa.edu.cn E-mail:ninaych@nuaa.edu.cn
  • 作者简介:陈燕 女, 博士, 副教授。主要研究方向: 难加工材料高效精密加工技术。Tel: 025-84895930 E-mail: ninaych@nuaa.edu.cn;杨树宝 男, 博士, 讲师。主要研究方向: 难加工材料高效精密加工技术。Tel: 0555-2316517 E-mail: sbyang2007 @nuaa.edu.cn;傅玉灿 男, 博士, 教授, 博士生导师。主要研究方向: 难加工材料高效精密加工技术。Tel: 025-84895857 E-mail: yucanfu@nuaa.edu.cn;徐九华 男, 博士, 教授, 博士生导师。主要研究方向: 难加工材料高效精密加工技术。Tel: 025-84896511 E-mail: jhxu@nuaa.edu.cn;苏宏华 男, 博士, 教授, 博士生导师。主要研究方向: 难加工材料高效精密加工技术。Tel: 025-84892901 E-mail: shh@nuaa.edu.cn
  • 基金资助:

    国家自然科学基金(50775115)

FEM Estimation of Tool Wear in High Speed Cutting of Ti6Al4V Alloy

CHEN Yan1, YANG Shubao2, FU Yucan1, XU Jiuhua1, SU Honghua1   

  1. 1. College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    2. School of Mechanical Engineering, Anhui University of Technology, Ma'anshan 243032, China
  • Received:2013-04-12 Revised:2013-06-13 Online:2013-09-25 Published:2013-06-21
  • Supported by:

    National Natural Science Foundation of China (50775115

摘要:

借助有限元方法对切削钛合金时硬质合金刀具的磨损进行了仿真。首先,根据钛合金切削时刀具磨损机理,建立了能够综合反映粘结磨损、扩散磨损及磨粒磨损的磨损率模型;通过增大传热系数、平滑节点磨损值等方法,解决了刀具磨损过程中切削温度场的仿真、内部网格的调整及刀具表面轮廓的光滑处理等一系列问题,结合磨损子程序建立了预测刀具磨损的有限元模型。然后,通过切削实验对有限元模型的有效性进行了验证,结果表明:所建立的有限元模型能够较准确的预测刀具前刀面磨损及其磨损形貌。最后,对高速切削钛合金条件下的刀具耐用度进行了预测,预测结果表明:随着速度的增加,刀具会快速磨损,切削速度为300 m/min时刀具寿命仅为130 m/min时的1/3。因此,切削速度的选择要综合考虑切削效率与刀具寿命这两个因素。

关键词: 高速切削, 钛合金, 刀具磨损, 有限元, 磨损率模型

Abstract:

By adopting the finite element method (FEM), the tool wear is simulated during the cutting of titanium alloy with a carbide tool. First, a wear rate model, which includes the abrasive wear, diffusion wear and adhesion wear, is built according to the tool wear mechanism during the cutting. Then a series of problems in tool wear simulation are solved such as the simulation of the cutting temperature field, adjustment of internal mesh, and the smoothing of tool geometry. Subsequently, an FEM wear prediction model is built and computed in combination with a wear subroutine. The validity of the finite element model is confirmed by cutting tests, which show that the tool rake face wear and wear morphology can be accurately predicted by the finite element model. Finally, tool life is predicted under the conditions of high-speed cutting of titanium alloys. The prediction results show that the cutting tools wear rapidly with the increase of the cutting speed. For example, the tool life with a cutting speed of 300 m/min is only one third of that with a speed of 130 m/min. Therefore, it is important to consider both cutting efficiency and tool life simultaneously in the selection of a cutting speed.

Key words: high speed cutting, titanium alloys, tool wear, FEM, wear rate model

中图分类号: