航空学报 > 2013, Vol. 34 Issue (6): 1285-1292   doi: 10.7527/S1000-6893.2013.0160

舱外航天服生命保障冷电联储系统性能分析

王胜男1, 李运泽1, 周航1, 周国栋2   

  1. 1. 北京航空航天大学航空科学与工程学院, 北京 100191;
    2. 中国航天员科研训练中心人因工程重点实验室, 北京 100094
  • 收稿日期:2012-12-12 修回日期:2013-03-05 出版日期:2013-06-25 发布日期:2013-03-12
  • 通讯作者: 李运泽, Tel.: 010-82338778 E-mail: liyunze@buaa.edu.cn E-mail:liyunze@buaa.edu.cn
  • 作者简介:王胜男 女, 硕士研究生。主要研究方向: 航天器热控制及电子设备热设计。 Tel: 010-82338778 E-mail: xing.a.nan.sheena.w@gmail.com;李运泽 男, 博士, 教授, 博士生导师。主要研究方向: 微纳卫星的自主热控制技术, 空间构件的热分析与安全性评估, 载人航天装备的能源管理与环境控制。 Tel: 010-82338778 E-mail: liyunze@buaa.edu.cn
  • 基金资助:

    人因工程重点实验室开放基金(HF2011-K-05)

Characteristic Analysis of Extravehicular Spacesuit Life Support Cooling-power Integrated System

WANG Shengnan1, LI Yunze1, ZHOU Hang1, ZHOU Guodong2   

  1. 1. School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China;
    2. National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing 100094, China
  • Received:2012-12-12 Revised:2013-03-05 Online:2013-06-25 Published:2013-03-12
  • Contact: 10.7527/S1000-6893.2013.0160 E-mail:liyunze@buaa.edu.cn
  • Supported by:

    Open Funding Project of National Key Laboratory of Human Factors Engineering (HF2011-K-05)

摘要:

基于质子膜燃料电池(PEMFC)和热驱制冷,提出一种舱外航天服冷电联储方法,根据热力学总能理论,通过能量的梯级利用和不同形式的能量联产来实现舱外航天服生命保障系统冷电联储、能源转化和环境控制一体化。对舱外航天服生命保障冷电联储系统进行了热力学分析,表明本文舱外航天服生命保障系统冷电联储方案与传统方案相比,能达到减少航天员出舱活动携带物品种类和提高能源利用率的目的。并重点对冷电联储系统储氢冷却器相关参数的选取对系统一次能源利用率及系统整体质量的影响进行分析,结果表明LaNi5和LmNi4.9Sn0.1较适合用于本文提出的舱外航天服生命保障冷电联储系统。

关键词: 舱外航天服, 冷电联储, 燃料电池, 热驱制冷, 储氢合金, 生命保障

Abstract:

Based on the techniques of proton exchange membrane fuel cell (PEMFC) and heat-driven cooling system, a method of combined cooling-power for the life support system of an extravehicular activity spacesuit is proposed in this paper. This method aims to realize the integration of cooling and power, the transient of different energies and the control of the environment for the life support system of the extravehicular activity spacesuit with the theory of thermal board total energy which points the energy step used, heat recovery and the combined generation of different forms of energy. Thermodynamic analysis of the system is performed. Compared with the separate method used in the traditional spacesuit, the combined method can decrease the kinds of materials, and provide more efficient use of resources. In addition, the H2 utilization coefficient and the total mass of the whole integrated system which are influenced by the different thermal parameters chosen for the hydrogen storage cooler are analyzed in detail, which demonstrates that LaNi5 and LmNi4.9Sn0.1 can be considered for this cooling-power integrated system.

Key words: extravehicular spacesuit, cooling-power integration, fuel cell, heat-driven cooling, metal hydride, life support

中图分类号: