[1] Liu J Y, Zeng Q H, Zhao W, et al. Theory and application of navigation system. Xi'an: Northwestern Polytechnical University Press, 2010: 2-5. (in Chinese) 刘建业, 曾庆化, 赵伟, 等. 导航系统理论与应用. 西安: 西北工业大学出版社, 2010: 2-5.
[2] Qin Y Y. Current status and development trend of international inertial instrument. Aeronautical Manufacturing Technology, 2008(9): 68-69. (in Chinese) 秦永元. 国际惯性器件发展现状和趋势. 航空制造技术, 2008(9): 68-69.
[3] Wang W. Technology of interference fibre optic gyroscope. Beijing: China Astronautic Publishing House, 2010: 4-6. (in Chinese) 王巍. 干涉型光纤陀螺仪技术. 北京: 中国宇航出版社, 2010: 4-6.
[4] Gustavson T L, Landragin A, Kasevich M A. Rotation sensing with a dual atom interferometer Sagnac gyroscope. Classical and Quantum Gravity, 2000, 17(12): 2385-2398.
[5] Hoskinson E, Packard R E, Haard T M. Quantum whisling in superfluid helium-4. Nature, 2005, 443(7024): 376.
[6] Hoskinson E, Sato Y, Packard R E. Superfluid4He interferometer operating near 2K. Physical Review B, 2006, 74(10): 100509.1-100509.8.
[7] Sato Y. Fiske-amplified superfluid interferometry. Physical Review B, 2010, 81(17): 172502.1-172502.4.
[8] Narayana S, Sato Y. Superfluid quantum interference in multiple-turn reciprocal geometry. Physical Review Letters, 2011, 106(6): 255301.1-255301.4.
[9] Golovashkin A I, Zherikhina L N, Tskhovrebov A M, et al. Ordinary SQUID interferometers and superfluid helium matter wave interferometers: the role of quantum fluctuations. Journal of Experimental and Theoretical Physics, 2010, 111(2): 332-339.
[10] Golovashkin A I, Izmalov G N, Ozolin V V, et al. Scheme of laboratory measurements of gravimagnetic effects with SHeQUID equipped with a rotation flux transformer. Gravitation and Comology, 2010, 16(1): 78-84.
[11] Sato Y, Joshi A, Packard R E. Flux locking a superfluid interferomenter. Applied Physics Letters, 2007, 91(7): 074107.1-074107.3.
[12] Song B Z, Zhao W, Xie Z, et al. Research on modeling and simulation for new quantum whistling superfluid cryogenic gyroscope. Journal of Applied Sciences, 2009, 27(3): 321-325. (in Chinese) 宋宝璋, 赵伟, 谢征, 等. 新型低温哨音超流体陀螺模型. 应用科学学报, 2009, 27(3): 321-325.
[13] Xie Z, Liu J Y, Zhao W, et al. Analysis and simulation of measure range of double weak-links structured high sensitivity superfluid gyroscope. Journal of Chinese Inertial Technology, 2011, 19(1): 79-83. (in Chinese) 谢征, 刘建业, 赵伟, 等. 双弱连接结构的高精度超流体陀螺的量程分析. 中国惯性技术学报, 2011, 19(1): 79-83.
[14] Xie Z, Liu J Y, Zhao W, et al. The exploratory research of a novel gyroscope based on superfluid Josephson effect. 2010 IEEE/ION Position Location and Navigation Symposium (PLANS), 2010: 14-19.
[15] Feng M Y, Zhao W, Liu J Y, et al. Information extraction and range expanding technology of double weak-link structured superfluid gyroscope. Modern Electronic Technique, 2012, 35(2): 94-99. (in Chinese) 冯铭瑜, 赵伟, 刘建业, 等. 双弱连接超流体陀螺信息提取与量程扩展技术. 现代电子技术, 2012, 35(2): 94-99.
[16] Liu J Y, Xie Z, Feng M Y, et al. Current status and development of superfluid gyroscope. Acta Aeronautica et Astronautica Sinica, 2012, 33(1): 1-10. (in Chinese) 刘建业, 谢征, 冯铭瑜, 等. 超流体陀螺仪的发展概况与研究进展. 航空学报, 2012, 33(1): 1-10.
[17] Chui T, Holmes W, Penanen K. Fluctuations of the phase difference across an array of Josephson junctions in superfluid 4He near the Lambda transition. Physical Review Letters, 2003, 90(8): 085301.1-085301.4.
[18] Sato Y, Joshi A, Packard R E. Direct measurement of quantum phase gradients in superfluid 4He flow. Physical Review Letters, 2007, 98(19): 195302.1-195302.3.
[19] Welander P B, Hahn I. Miniature high-resolution thermometer for low-temperature applications. Review of Scientific Instruments, 2001, 72(9): 3600-3604.
[20] Sato Y, Parkard R E. Superfluid helium quantum interference devices: physics and applications. Reports on Progress in Physics, 2012, 75(1): 016401.1-016401.27.
[21] Hoskinson E, Sato Y, Penanen K, et al. A chemical potential "battery" for superfluid4He weak links. Proceedings of the 24th International Conference on Low Temperature Physics, 2005: 117-118.
[22] Sato Y. DC-SQUID based neodymium magnet displacement sensor for superfluid experiments. Review of Scientific Instruments, 2009, 80(5): 055102.1-055102.5. |