[1] Tafazoli M. A study of on-orbit spacecraft failures. Acta Astronautica, 2009, 64(2-3): 195-205.[2] Morin P, Samson C. Time-varying exponential stabilization of a rigid spacecraft with two control torques. IEEE Transactions on Automatic Control, 1997, 42(4): 528- 534.[3] Tsiotras P, Doumtchenko V. Control of spacecraft subject to actuator failures: state-of-the-art and open problems. Journal of the Astronautical Sciences, 2000, 48(2-3): 337-358.[4] Zhang H H, Wang F, Trivailo P M. Spin-axis stabilisation of underactuated rigid spacecraft under sinusoidal disturbance. International Journal of Control, 2008, 81(12): 1901-1909.[5] Li S H, Tian Y P. Attitude stabilization of a rigid spacecraft with two controls. Acta Automatica Sinica, 2003, 29(2): 168-174.[6] Krishnan H, McClamroch N H, Reyhanoglu M. Attitude stabilization of a rigid spacecraft using two momentum wheel actuators. Journal of Guidance, Control, and Dynamics, 1995, 18(2): 256-263.[7] Horri N M, Hodgart S. Attitude stabilization of an underactuated satellite using two wheels. IEEE Aerospace Conference, 2003: 2629-2635.[8] Urakubo T, Tsuchiya K, Tsujita K. Attitude control of a spacecraft with two reaction wheels. Journal of Vibration and Control, 2004, 10(9): 1291-1311.[9] Yang H, Wu Z. An attitude controller for under-actuated spacecraft with two flywheels. Control Theory & Application, 2008, 25(3): 506-510. (in Chinese) 阳洪, 吴忠. 基于飞轮的欠驱动航天器姿态控制器设计. 控制理论与应用, 2008, 25(3): 506-510.[10] Crouch P. Spacecraft attitude control and stabilization: applications of geometric control theory to rigid body models. IEEE Transactions on Automatic control, 1984, 29(4): 321-331.[11] Shen H J, Tsiotras P. Time-optimal control of axisymmetric rigid spacecraft using two controls. Journal of Guidance, Control, and Dynamics, 1999, 22(5): 682-694.[12] Marchand N, Alamir M. Receding horizon stabilization of a rigid spacecraft with two actuators. Journal of Dynamic Systems Measurement and Control Transactions of the ASME, 2003, 125(3): 489-491.[13] Tsiotras P. Feasible trajectory generation for underactuated spacecraft using differential flatness. AAS/AIAA Astrodynamics Specialist Conference, 1999: 1-11.[14] Ge X S, Chen L Q. Attitude control of a rigid spacecraft with two momentum wheel actuators using genetic algorithm. Acta Astronautica, 2004, 55(1): 3-8.[15] Lin Z, Duan G R. Research on sliding mode control for underactuated rigid spacecraft attitude maneuver. Control and Decision, 2010, 25(3): 389-393. (in Chinese) 林壮, 段广仁. 欠驱动刚体航天器姿态机动滑模控制研究. 控制与决策, 2010, 25(3): 389-393.[16] Zheng M J, Xu S J. Backstepping control for attitude control system of an underactuated spacecraft. Journal of Astronautics, 2006, 27(5): 947-951. (in Chinese) 郑敏捷, 徐世杰. 欠驱动航天器姿态控制系统的退步控制设计方法. 宇航学报, 2006, 27(5): 947-951.[17] Zhang H H, Wang F. Single axis pointing control for underactuated flexible spacecraft. Journal of Astronautics, 2011, 32(7): 1491-1501. (in Chinese) 张洪华, 王芳. 欠驱动挠性航天器的单轴指向控制. 宇航学报, 2011, 32(7): 1491-1501.[18] Yoon H, Tsiotras P. Spacecraft line-of-sight control using a single variable-speed control moment gyro. Journal of Guidance, Control, and Dynamics, 2006, 29(6): 1295-1308.[19] Kwon S, Shimomura T, Okubo H. Pointing control of spacecraft using two SGCMGs via LPV control theory. Acta Astronautica, 2011, 68(8): 1168-1175.[20] Jin L, Xu S J. Attitude stabilization of an underactuated spacecraft with two reaction wheels. Chinese Space Science and Technology, 2009, 29(2): 8-16. (in Chinese) 金磊, 徐世杰. 带有两个飞轮的欠驱动航天器姿态稳定控制研究. 中国空间科学技术, 2009, 29(2): 8-16.[21] Hu Q. Adaptive output feedback sliding-mode manoeuvring and vibration control of flexible spacecraft with input saturation. IET Control Theory and Applications, 2008, 2(6): 467-478.[22] Zhu Z, Xia Y Q, Fu M Y. Adaptive sliding mode control for attitude stabilization with actuator saturation. IEEE Transactions on Industrial Electronics, 2011, 58(10): 4898-4907.[23] Hu Q. Robust adaptive sliding mode attitude maneuvering and vibration damping of three-axis-stabilized flexible spacecraft with actuator saturation limits. Nonlinear Dynamics, 2009, 55(4): 301-321.[24] Chang Y, Cheng C C. Design of adaptive sliding surfaces for systems with mismatched perturbations to achieve asymptotical stability. IET Control Theory and Applications, 2007, 1(1): 417-421.[25] Cheng C C, Chien S H. Adaptive sliding mode controller design based on T-S fuzzy system models. Automatica, 2006, 42(6): 1005-1010.[26] Xiang W, Chen F. An adaptive sliding mode control scheme for a class of chaotic systems with mismatched perturbations and input nonlinearities. Communications in Nonlinear Science and Numerical Simulation, 2011, 16(1): 1-9.[27] Cheng C C, Wen C C, Lee W T. Design of decentralised sliding surfaces for a class of large-scale systems with mismatched perturbations. International Journal of Control, 2009, 82(11): 2013-2025. |