航空学报 > 2013, Vol. 34 Issue (11): 2443-2451   doi: 10.7527/S1000-6893.2013.0179

混合翼身布局客机SAX-40水上迫降力学性能数值研究

郭保东1, 屈秋林1, 刘沛清1,2, 周志杰2, 张纯1   

  1. 1. 北京航空航天大学 航空科学与工程学院, 北京 100191;
    2. 北京航空航天大学 大型飞机高级人才培训班, 北京 100191
  • 收稿日期:2012-12-06 修回日期:2013-03-19 出版日期:2013-11-25 发布日期:2013-04-11
  • 通讯作者: 屈秋林,Tel.:010-82339592 E-mail:qql@buaa.edu.cn E-mail:qql@buaa.edu.cn
  • 作者简介:郭保东 男,博士研究生。主要研究方向:民用飞机水上迫降力学性能和水上飞机起飞降落性能等。 Tel:010-82315463 E-mail:gbd@ase.buaa.edu.cn;屈秋林 男,博士,讲师。主要研究方向:地面效应空气动力学、民用飞机水上迫降力学性能以及水上飞机起飞降落性能等。 Tel:010-82339592 E-mail:qql@buaa.edu.cn;刘沛清 男,博士,教授,博士生导师。主要研究方向:螺旋桨气动设计、漩涡分离流与流动控制、高速层流控制技术以及大型飞机起飞着陆气动性能。 Tel:010-82338967 E-mail:lpq@buaa.edu.cn
  • 基金资助:

    航空科学基金(20102351023);高等学校博士学科点专项科研基金(20091102120021);国家"973"计划(2009CB72400101)

Ditching Performance of Silent Aircraft SAX-40 in Hybrid Wing-body Configuration

GUO Baodong1, QU Qiulin1, LIU Peiqing1,2, ZHOU Zhijie2, ZHANG Chun1   

  1. 1. School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China;
    2. Large Aircraft Advanced Training Centre, Beihang University, Beijing 100191, China
  • Received:2012-12-06 Revised:2013-03-19 Online:2013-11-25 Published:2013-04-11
  • Supported by:

    Aeronautical Science Foundation of China (20102351023);Research Fund for the Doctoral Program of Higher Education of China (20091102120021);National Basic Research Program of China (2009CB72400101)

摘要:

为了验证未来混合翼身布局飞机的水上迫降力学性能,数值求解非定常雷诺时均Navier-Stokes (URANS)方程和Realizable κ-ε湍流模型,采用动网格方法处理飞机与水面间的相对运动、流体体积(VOF)模型追踪水面变形,模拟了SAX-40飞机刚性模型以12°初始俯仰角在平静水面上迫降的过程。结果分析表明:迫降过程中,触水时的冲击作用导致飞机下表面水线附近产生较大的正压峰值,入水后的浸没滑行作用导致机身下表面尾部弯曲部分出现大面积的负压,使得飞机发生大幅抬头;迫降过程中飞机的法向载荷峰值为2.87G,纵向载荷峰值为1.05G,表面冲击压力峰值为720 kPa。SAX-40飞机在水上迫降过程中有跳离水面的不稳定运动趋势,进行混合翼身布局设计时应予考虑。

关键词: 水动力学, 水上迫降, 有限体积法, 运输机, 多相流, 入水冲击, 混合翼身布局

Abstract:

The planned ditching of aircraft SAX-40 on calm water is numerically simulated to investigate the ditching performance of the hybrid wing-body configuration. The unsteady Reynolds-averaged Navier-Stokes (URANS) equations and the Realizable κ-ε turbulence model are solved by a fluent solver. The relative motion between the aircraft and water is handled by the dynamic mesh method. The air-water interface is tracked by a volume of fluid (VOF) model. During the ditching process, the impact brings about the positive pressure peak on the aircraft's lower surface near the waterline; and the planing brings forth the negative pressure on the aft curved portion of the aircraft's lower surface, resulting in a suck force and a strong nose-up pitch motion. As the aircraft touches the water, the normal load increases rapidly to 2.87G, and the longitudinal load to 1.05G. The slamming pressure reaches a peak of about 720 kPa. This airplane bounces up from the water and this defective performance should be considered during the design of a hybrid wing-body configuration.

Key words: hydrodynamics, ditching, finite volume method, transport aircraft, multiphase flow, water impact, hybrid wing-body configuration

中图分类号: