[1]Dana W. The X-15 airplane -lessons learned[R].AIAA-1993-0309, 1993.
[2]Chase R L, Tang M H. A history of the NASP program from the formation of the joint program office to the termination of the HySTP scramjet performance demonstration program[R]. AIAA-1995-6031, 1995.
[3]Peebles C. The X-43A flight research program: lessons learned on the road to Mach 10[M]. Washington, D. C.: AIAA Inc., 2007.
[4]Walker S, Rodgers F. Falcon hypersonic technology overview[R]. AIAA-2005-3253, 2005.
[5]Spain C, Soistmann D, Parker E, et al. An overview of selected NASP aeroelastic studies at the NASA langley research center[R]. AIAA-1990-5218, 1990.
[6]Michael W K, Todd S. Thermoelastic test techniques[R]. NASA TM-101747, 1991.
[7]Rodgers J P. Aerothermoelastic analysis of a NASP-like vertical fin[R]. AIAA-1992-2400, 1992.
[8]Spain Charles V, Zeiler T A, Bullock Ellen P, et al. A flutter investigation of all-moveable NASP-like wings at hypersonic speeds[R]. AIAA-1993-1315, 1993.
[9]Cole S R, Florance J R, Thomason L B, et al. Supersonic aeroelastic instability results for a nasp-like wing model[R]. AIAA-1993-1369, 1993.
[10]Heeg J, Zeiler T, Pototzky A, et al. Aerothermoelastic analysis of a NASP demonstrator model[R]. AIAA-1993-1366, 1993.
[11]Pak C G, Baker M L. Control surface buzz analysis of a generic NASP wing[R]. AIAA-2001-1581, 2001.
[12]Lawrence J O. Aerothermoelasticity: its impact on stability and control of wingedaerospace vehicles[J]. Journal of Aircraft, 1965, 2(6):517-526.
[13]Ericsson E L. Hypersonic aerothermoelastic characteristics of a finned missile[J]. Journal of Spacecraft, 1979, 16(3):187-190.
[14]Friedmann P P. Hypersonic aeroelasticity and aerothermoelasticity with application to reusable launch vehicles[R]. AIAA-2003-7014, 2003.
[15]Heeg J, Gilbert M G, Pototzky A S. Active control of aerothermoelastic effects for a conceptual hypersonic aircraft[J]. Journal of Aircraft, 1993, 30(4): 453-458.
[16]惠俊鹏. 热环境下翼面颤振分析与颤振主动抑制研究[D]. 北京: 北京航空航天大学,2006.
Hui Junpeng. Hypersonic flutter analysis for wings undue thermal circumstances and active flutter suppression[D]. Beijing: Beijing University of Aeronautics and Astronautics, 2006. (in Chinese)
[17]Wu Z G, Yang C. Flight loads and dynamics of flexible air vehicles[J]. Chinese Journal of Aeronautics, 2004, 17(1): 17-22.
[18]Lees L. Hypersonic flow[C]∥Proceedings of the Fifth International Aeronautic Conference. 1955.
[19]Lighthill M J. Oscillating airfoils at high mach numbers[J]. Journal of the Aeronautical Sciences, 1953, 20(6):402-406.
[20]Ashley H, Zartarian G. Piston theory—a new aerodynamic tool for the aeroelastician[J]. Journal of the Aeronautical Sciences, 1956, 23(12): 1109-1118.
[21]陈劲松, 曹军. 超声速和高超声速翼型非定常气动力的一种近似计算方法[J]. 空气动力学学报, 1990, 8(3): 339-344.
Chen Jinsong, Cao Jun. An approximate calculating method of supersonic/hypersonic unsteady aerodynamic forces of airfoils[J]. Acta Aerodynamica Sinica, 1990, 8(3): 339-344. (in Chinese)
[22]杨炳渊,宋伟力. 用当地流活塞理论计算大攻角翼面超声速颤振[J]. 振动与冲击, 1995, 15(2): 60-63.
Yang Bingyuan, Song Weili. Supersonic flutter calculation of a wing with attack angle by local flow piston theory[J]. Journal of Vibration And Shock, 1995, 15(2): 60-63. (in Chinese)
[23]张伟伟, 叶正寅. 基于当地流活塞理论的气动弹性计算方法研究[J]. 力学学报, 2005, 37(5): 632-639.
Zhang Weiwei, Ye Zhengyin. Numerical method of aeroelasticity based on local Piston theory[J]. Acta Mechanica Sinica, 2005, 37(5): 632-639. (in Chinese)
[24]Yao Z X, Liu D D. From piston theory to unified hypersonic-supersonic lifting surface method[J]. Journal of Aircraft, 1997, 34(3): 304-312.
[25]Zaero theoretical manual (Version 7.3)[CP]. Scottsale, A. Z., USA: ZONA Technology, Inc., 2005.
[26]Hui W H. Unified unsteady supersonic/hypersonic theory of flow past double wedge airfoils[J]. Journal of Applied Mathematics and Physics, 1983, 34(4): 458-488.
[27]Liu D D, Chen P C, Tang L, et al. Expedient hypersonic aerothermodynamics methodology for RLV/TPS design[R]. AIAA-2002-5129, 2002.
[28]Thuruthimattam B J, Friedmann P P, Powell K G, et al. Aeroelasticity of a generic hypersonic vehicle[R]. AIAA-2002-1209, 2002.
[29]Thuruthimattam B J, Friedmann P P, Mcnamara J J, et al. Modeling approaches to hypersonic aeroelasticity[C]∥ASME International Mechanical Engineering Congress and Exposition. New Orleans, Louisiana, USA: ASME, 2002.
[30]Thuruthimattam B J, Friedmann P P, Mcnamara J J, et al. Modeling approaches to hypersonic aerothermoelasticity with application to reusable launch vehicles[R]. AIAA-2003-1967, 2003.
[31]Mcnamara J J, Thuruthimattam B J, Friedmann P P, et al. Hypersonic aerothermoelastic studies for reusable launch vehicles[R]. AIAA-2004-1590, 2004.
[32]Bartels R E, Rumsey C L, Biedron R T. CFL3D version 6.4—general usage and aeroelastic analysis[R]. NASA TM-2006-214301, 2006.
[33]McNamara J J, Friedmann P P, Powell K G, et al. Three-dimensional aeroelastic and aerothermoelastic behavior in hypersonic flow[R]. AIAA-2005-2175, 2005.
[34]Roger M. Aerothermoelasticity[J]. Aerospace Engineering, 1958(2):162-166.
[35]吴志刚, 惠俊鹏, 杨超. 高超声速下翼面的热颤振工程分析[J]. 北京航空航天大学学报, 2005,31(3): 270-273.
Wu Zhigang, Hui Junpeng, Yang Chao. Hypersonic aerothermoelastic analysis of wings[J]. Journal of Beijing University of Aeronautics and Astronautics,2005,31(3): 270-273. (in Chinese)
[36]Ericsson L E, Almroth B O, Bailie J A. Hypersonic aerothermoelastic characteristics of a finned missile[J]. Journal of Aircraft, 1979, 16(3): 187-192.
[37]Ricketts R H, Doggett R V, Jr. NASP aeroservothermoelasticity studies[R]. NASA TM-104058, 1991.
[38]Lind R. Linear parameter-varying modeling and control of structural dynamics with aerothermoelastic effects[R]. AIAA-1999-1393, 1999.
[39]Lind R, Buffington J, Sparks A K. Multi-loop aeroservoelastic control of a hypersonic vehicle[R]. AIAA-1999-4123, 1999.
[40]Loehner R, Yang C, Cerbal J, et al. Fluid-structure-thermal interaction using a loose coupling algorithm and adaptive unstructured grids[R]. AIAA-1998-2419, 1998.
[41]McNamara J J. Aeroelastic and aerothermoelastic behavior of two and three dimensional lifting surfaces in hypersonic flow[D]. Ann Arbor, M. I., USA: University of Michigan, 2005.
[42]Lemley C E. Design criteria for prediction and prevention of panel flutter, Vol. I: criteria presentation VII: background and review of state of the art[R]. AFB, O. H., USA: Air Force Flight Dynamic Lab., TR-67-140, 1967.
[43]孟凡颢, 钟腾育. 用壁板颤振理论解决某系列飞机的方向舵蒙皮裂纹故障[J]. 飞机设计, 2000(4): 1-6.
Meng Fanhao, Zhong Tengyu. Using panel flutter theory in the solution of skin crackle of rudders[J]. Aircraft Design, 2000(4):1-6. (in Chinese)
[44]Miles J W. Dynamic chordwise stability at supersonic speeds[R]. North American Aviation Report, AL-1140, 1950.
[45]Jordan P. The physical nature of panel flutter[J]. Aero Digest, 1956, 72(2): 34-38.
[46]Bisplinghoff R L. Aeroelasticity[M]. Cambridge, Mass: Addison-Wesley Publishing Company, 1955.
[47]Bisplinghoff R L. Principles of aeroelasticity[M]. New York: John Wiley &Sons, Inc., 1962.
[48]Dowell E H. Aeroelasticity of plates and shells[M]. Leyden: Noordhoff International Pub., 1974.
[49]Xue D Y, Mei C, Shore C P. Finite element two-dimensional panel flutter at high supersonic speeds and elevated temperature[R]. AIAA-1990-982, 1990.
[50]Gray C E, Mei C. Large-amplitude finite element flutter analysis of composite panels in hypersonic flow[J]. AIAA Journal, 1993, 31(6): 1090-1099.
[51]Abbas J F, Ibrahim R A, Gibson R F. Nonlinear flutter of orthotropic composite panel under aerodynamic heating[J]. AIAA Journal, 1993, 31(8): 1478-1488.
[52]Singha M K, Ganapathi M. A parametric study on supersonic flutter behavior of laminated composite skew flat panels[J]. Composite Structures, 2005, 69(1): 55-63.
[53]Xue D Y. A finite element frequency domain solution of nonlinear panel flutter with temperature effects and fatigue life analysis[D]. Norfolk, V. A., USA: Old Donminion University, 1991.
[54]Dhainaut J M. Nonlinear response and fatigue estimation of surface panels to white and non-white gaussian random excitations[D]. Norfolk, V. A., USA: Old Donminion University, 2001.
[55]Scott R C, Weisshaar T A. Panel flutter suppression using adaptive material actuators[J]. Journal of Aircraft, 1994, 31(1): 213-222.
[56]Mei C, Abdel-Motagaly K, Chen R. Review of nonlinear panel flutter at supersonic and hypersonic speeds[J]. Applied Mechanics Reviews, 1999, 52(10): 312-321.
[57]Cheng G F, Mei C. Finite element modal formulation for hypersonic panel flutter analysis with thermal effects[J]. AIAA Journal, 2004, 42(4): 687-695.
[58]杨智春, 夏巍, 孙浩. 高速飞行器壁板颤振的分析模型和分析方法[J]. 应用力学学报, 2006, 23(4): 537-542.
Yang Zhichun, Xia Wei, Sun Hao. Analysis of panel flutter in high speed flight vehicles[J]. Chinese Journal of Applied Mechanics, 2006, 23(4):537-542. (in Chinese)
[59]Bolotin V V. Nonconservative problem of the theory of elastic stability[M]. Oxford, UK: Pergamon Press, 1963.
[60]Beal T R. Dynamic stability of a flexible missile under constant and pulsating thrust[J]. Journal of Aircraft, 1965, 3(3): 486-494.
[61]Wu J J. Missile stability using finite elements: an unconstrained variational approach[J]. AIAA Journal, 1976, 14(3): 313-319.
[62]宋健. 在推力和阻力作用下飞行器横向振动分析[J]. 中国工程科学, 2000, 2(10): 66-72.
Song Jian. Lateral vibration analyses of flying vehicle under thrust and drag[J]. Engineering Science, 2000, 2(10):66-72. (in Chinese)
[63]Seyranian O N. Optimization of stability of a flexible missile under follower thrust[R]. AIAA-1998-4969,1998.
[64]Pastilha P A. Structural optimization and analysis for flutter instability problems[C]∥International Conference on Engineering Dynamics(ICED). 2007.
[65]Livshits D S, Yaniv S, Karpel M. Dynamic stability of free flight rockets[R]. AIAA-1996-1344, 1996.
[66]Ohshima T, Sugiyama Y. Effect of aerodynamic loads on dynamic stability of slender launch vehicle subjected to an end rocket thrust[C]∥2002 ASME International Mechanical Engineering Congress and Exposition. 2002.
[67]Xu Y, Xie C C, Yang C. Effect of thrust on aeroelastic stability of a slender missile[R]. AIAA-2008-2022, 2008.
[68]Pourtakdoust S H, Assadian N. Investigation of thrust effect on the vibrational characteristics of flexible guided missiles[J]. Journal of Sound and Vibration, 2004, 272(1-2): 287-299.
[69]王其政. 结构耦合动力学[M]. 北京: 中国宇航出版社, 1999.
Wang Qizheng. Structural coupling dynamics[M]. Beijing: China Astronautics Publishing House, 1999.(in Chinese)
[70]Fidan B, Mirmirani M, Ioannou P. Flight dynamics and control of air-breathing hypersonic vehicles: review and new directions[R]. AIAA-2003-7081, 2003.
[71]Schmidt D. Dynamics and control of hypersonic aeropropulsive/aeroelastic vehicles[R]. AIAA-1992-4326, 1992.
[72]Chavez F R, Schmidt D K. Analytical aeropropulsive/aeroelastic hypersonic-vehicle model with dynamic analysis[J]. Journal of Guidance, Control, and Dynamics, 1994, 17(6): 1308-1319.
[73]Walton J A. Performance sensitivity of hypersonic vehicles to changes in angle of attack and dynamic pressure[R]. AIAA-1989-2463, 1989.
[74]Raney D L, Mcminn J D, Pototzky A S, et al. Impact of aeroelasticity on propulsion and longitudinal flight dynamics of an air-breathing hypersonic vehicle[R]. AIAA-1993-1367, 1993.
[75]Velapoldi D K. Flight dynamics and feedback guidance issues for hypersonic airbreathing vehicles[R]. AIAA-1999-4122, 1999.
[76]Bolender M A, Doman D B. A non-linear model for the longitudinal dynamics of a hypersonic air-breathing vehicle[R]. AIAA-2005-6255, 2005.
[77]Oppenheimer M, Doman D B. A hypersonic vehicle model developed with piston theory[R]. AIAA-2006-6637, 2006.
[78]Michael A, Doman D B. Nonlinear longitudinal dynamical model of an air-breathig hypersonic vehicle[J]. Journal of Spacecraft and Rockets, 2007, 44(2): 374-387.
[79]Oppenheimer M, Skujins T, Bolender M, et al. A flexible hypersonic vehicle model developed with piston theory[R]. AIAA-2007-6396, 2007.
[80]Schmidt D K. Integrated control of hypersonic vehicles—a necessity not just a possibility[R]. AIAA-1993-3761, 1993.
[81]Buschek H A. Robust control of hypersonic vehicles considering propulsive and aeroelastic effects[R]. AIAA-1993-3726, 1993.
[82]Schmidt F R. Uncertainty modeling for large flexible high-speed aircraft[R]. AIAA-1996-3920, 1996. |