航空学报 > 2025, Vol. 46 Issue (24): 332062-332062   doi: 10.7527/S1000-6893.2025.32062

基于交互动静态多模型的拒止环境鲁棒滤波自主导航方法

南子寒1, 周睿阳1, 王永亮1, 刘大禹2, 董明3,4(), 孟凡琛1   

  1. 1.北京航天控制仪器研究所,北京 100039
    2.北京电子工程总体研究所,北京 100854
    3.北京跟踪与通信技术研究所,北京 100094
    4.智慧地球重点实验室,北京 100094
  • 收稿日期:2025-04-02 修回日期:2025-05-13 接受日期:2025-07-09 出版日期:2025-07-31 发布日期:2025-07-18
  • 通讯作者: 董明 E-mail:dongmingdmdm@sina.com
  • 基金资助:
    国家自然科学基金(62388101);中国航天科技集团自主研发项目(2024899);惯性测量国家重点实验室稳定支持项目

A robust filtering autonomous navigation method based on interactive dynamic and static multi-models in denied environments

Zihan NAN1, Ruiyang ZHOU1, Yongliang WANG1, Dayu LIU2, Ming DONG3,4(), Fanchen MENG1   

  1. 1.Beijing Institute of Aerospace Control Devices,Beijing 100039,China
    2.Beijing Institute of Electrical Engineering,Beijing 100854,China
    3.Beijing Institute of Tracking and Telecommunications Technology,Beijing 100094,China
    4.Key Laboratory of Smart Earth,Beijing 100094,China
  • Received:2025-04-02 Revised:2025-05-13 Accepted:2025-07-09 Online:2025-07-31 Published:2025-07-18
  • Contact: Ming DONG E-mail:dongmingdmdm@sina.com
  • Supported by:
    National Natural Science Foundation of China(62388101);China Aerospace Science and Technology Corporation Independent Research and Development Project(2024899);State Key Laboratory of Inertial Measurement Stabilization Support Project

摘要:

针对复杂环境下自主导航系统抗拒止、强鲁棒等应用需求,提出了一种基于交互多模型的鲁棒滤波方法(IMM-RCKF)。该方法通过量测不确定性量化与非线性滤波器估计,利用量测中断前滤波新息,结合先验知识调整后验概率矩阵权值,优化鲁棒容积卡尔曼滤波器的参数误差模型,选用动静态滤波的方法对两者做交互融合处理,形成了高阶非线性多模型滤波器,增强了滤波器对复杂环境的自适应性和干扰环境的鲁棒性。将其应用到某空天飞行器的自主导航系统中,结果表明,基于IMM原理融合鲁棒滤波的多模型滤波方法,有效提高了导航系统的收敛速度与估计精度,相比于鲁棒卡尔曼滤波方法,位置精度提高约14.3%,速度精度提高约11.2%,并进一步提高了系统抗干扰能力,有效解决了传统卡尔曼滤波器难以处理模型误差的难题。

关键词: 多源自主导航, 动静态滤波器, 交互多模型, 卫星拒止, 惯性导航

Abstract:

To meet the application requirements of anti-jamming and enhanced robustness for autonomous navigation systems in complex environments, this paper proposes a Robust Cubature Kalman Filter method based on the Interacting Multiple Model (IMM-RCKF) framework. The method integrates measurement uncertainty quantification and nonlinear filter estimation, leveraging the filter innovation before measurement interruption to dynamically adjust the posterior probability matrix weights through prior knowledge. By optimizing the parametric error model of the robust cubature Kalman filter and adopting a hybrid static-dynamic filtering strategy for interactive fusion, a high-order nonlinear multi-model filter is developed. This architecture significantly enhances the environmental adaptability and interference robustness of the filter. The proposed method is implemented in the autonomous navigation system of a hypersonic aerospace vehicle. Experimental results demonstrate that the IMM-based multi-model filtering approach effectively improves the convergence speed and estimation accuracy of the navigation system. Compared with conventional robust Kalman filtering methods, the position accuracy is increased by approximately 14.3% and the velocity accuracy by 11.2%. Furthermore, the system exhibits superior anti-interference capability, successfully addressing the long-standing challenge of traditional Kalman filters in handling model errors under dynamic uncertainties.

Key words: multi source autonomous navigation, dynamic and static filters, interacting multiple mode, GNSS denied, inertial navigation

中图分类号: