航空学报 > 2024, Vol. 45 Issue (S1): 730782-730782   doi: 10.7527/S1000-6893.2024.30782

GNSS拒止下多源自主导航鲁棒滤波方法

南子寒1(), 刘大禹2, 董明3,4, 梁文宁5, 赵雪薇1, 马伊琳1, 关瑶1   

  1. 1.北京航天控制仪器研究所,北京 100039
    2.北京电子工程总体研究所,北京 100854
    3.北京跟踪与通信技术研究所,北京 100094
    4.智慧地球重点实验室,北京 100094
    5.中国航天科技集团有限公司,北京 100048
  • 收稿日期:2024-06-04 修回日期:2024-06-24 接受日期:2024-07-04 出版日期:2024-07-16 发布日期:2024-07-11
  • 通讯作者: 南子寒 E-mail:nan657584155@163.com
  • 基金资助:
    航天科技集团九院科技委青年基金(KJWQN202402)

Robust filtering method for GNSS denied multi-source autonomous navigation

Zihan NAN1(), Dayu LIU2, Ming DONG3,4, Wenning LIANG5, Xuewei ZHAO1, Yilin MA1, Yao GUAN1   

  1. 1.Beijing Institute of Aerospace Control Devices,Beijing  100039,China
    2.Beijing Institute of Electrical Engineering,Beijing  100854,China
    3.Beijing Institute of Tracking and Telecommunications Technology,Beijing  100094,China
    4.Key Laboratory of Smart Earth,Beijing  100094,China
    5.China Aerospace Science and Technology Corporation,Beijing  100048,China
  • Received:2024-06-04 Revised:2024-06-24 Accepted:2024-07-04 Online:2024-07-16 Published:2024-07-11
  • Contact: Zihan NAN E-mail:nan657584155@163.com
  • Supported by:
    Aerospace Science and Technology Group Ninth Academy Science and Technology Committee Youth Fund(KJWQN202402)

摘要:

针对飞行器在卫星拒止环境下的高精度、高完备等导航定位需求,提出了一种融合捷联惯导、卫星导航和气压高度计的多源自主导航鲁棒滤波方法。在量测中断后较短的时间内,该方法通过量测不确定性与非线性误差模型的滤波器估计,能够精确量化紧组合导航模式中的状态空间模型,在深入分析量测异常向量对滤波器状态输出的作用机理基础上,引入鲁棒容积卡尔曼滤波设计,有效改善了误差协方差矩阵的抑制效果,提升了多源自主导航解译过程中滤波器的稳定性和状态方程的估计精度。仿真结果表明:典型飞行运动模式下,该方法相对于传统的容积卡尔曼滤波,陀螺仪与加速度计的零偏状态估计精度提升约31%,自主导航系统定位精度提升约23.77%,并更好地抑制了姿态角误差,为国家综合PNT体系多源自主导航终端的可靠应用提供了参考借鉴。

关键词: 多源自主导航, GNSS拒止, 鲁棒滤波, 紧组合, 惯性导航

Abstract:

To meet the requirements for high precision and high completeness in navigation and positioning of spacecraft in the environment of satellite rejection, a robust filtering method for multi-source autonomous navigation is proposed, which combines strapdown inertial navigation, satellite navigation and barometric altimeter. In a short period of time after measurement interruption, this method can accurately quantify the state space model in the tightly integrated navigation model through the filter estimation of the measurement uncertainty and nonlinear error model. Based on an in-depth analysis of the mechanism of the measurement anomaly vector’s action on the filter state output, a robust volume Kalman filter is proposed. The suppression effect of error covariance matrix is effectively improved, and the stability of filter and the estimation accuracy of state equation are improved in the process of multi-source autonomous navigation interpretation. The simulation results show that compared with the traditional volume Kalman filter, the method proposed can improve the accuracy of zero bias estimation of the gyroscope and accelerometer by about 31% and the positioning accuracy of autonomous navigation system by about 23.77%, and suppress the attitude angle error. This study can provide a reference for the terminal application of multi-source autonomous navigation system of the new generation of national integrated PNT system.

Key words: multi-source autonomous navigation, GNSS denied, nonlinearity robust filtering, tight integration, inertial navigation

中图分类号: