1 |
黎璐玫, 刘伟骏, 俞越. 空间碎片现状与挑战[J]. 中国无线电, 2023(8): 33-36.
|
|
LI L M, LIU W J, YU Y. Current situation and challenges of space debris[J]. China Radio, 2023(8): 33-36 (in Chinese).
|
2 |
何英姿, 杜航, 张海博. 基于深度学习的非合作目标感知研究进展[J]. 飞控与探测, 2023, 6(1): 1-14.
|
|
HE Y Z, DU H, ZHANG H B. Research progress of non-cooperative target intelligent perception based on deep learning[J]. Flight Control & Detection, 2023, 6(1): 1-14 (in Chinese).
|
3 |
ZHANG H Y, ZHANG G, TIAN L F. Hybrid ground-space target visit problem with a coplanar impulse[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(6): 5849-5859.
|
4 |
ZHOU Y, YAN Y, HUANG X, et al. Mission planning optimization for the visual inspection of multiple geosynchronous satellites[J]. Engineering Optimization, 2015, 47(11): 1543-1563.
|
5 |
左海, 郭洋, 吴洪亮, 等. 浅析“星链” 卫星系统的发展及其影响[J]. 通信与信息技术, 2022(): 57-59.
|
|
ZUO H, GUO Y, WU H L, et al. Analysis on the development and influence of “star chain” satellite system[J]. Communication & Information Technology, 2022(Sup 2): 57-59 (in Chinese).
|
6 |
王学宇, 武坦然. OneWeb低轨道卫星系统及其军事应用分析[J]. 航天电子对抗, 2022, 38(4): 59-64.
|
|
WANG X Y, WU T R. Analysis on OneWeb LEO satellite system and its military application[J]. Aerospace Electronic Warfare, 2022, 38(4): 59-64 (in Chinese).
|
7 |
柯知非, 黄石生, 李玉良, 等. 低轨大型遥感星座发展现状及其关键技术[J]. 航天返回与遥感, 2023, 44(1): 93-101.
|
|
KE Z F, HUANG S S, LI Y L, et al. Research on the development status and key technologies of large LEO remote sensing constellations[J]. Spacecraft Recovery & Remote Sensing, 2023, 44(1): 93-101 (in Chinese).
|
8 |
樊巍. 中国启动建设超低轨道卫星星座[N]. 环球时报, 2023-07-14(008).
|
|
FAN W. China launched the construction of ultra-low orbit satellite constellation [N]. Global Times, 2023-07-14 (008) (in Chinese).
|
9 |
王刚, 左鹏, 洪涛, 等. 低轨卫星星座设计方法综述[C]∥第十八届卫星通信学术年会. 2022: 61-66.
|
|
WANG G, ZUO P, HONG T, et al. Summary of low Earth orbit satellite constellation design methods[C]∥ 18th Annual Conference on Satellite Communication. 2022: 61-66 (in Chinese).
|
10 |
WALKER J G. Some circular orbit patterns providing continuous whole Earth coverage[J]. Journal of the British Interplanetary Society, 1971, 24: 369-384.
|
11 |
LUDERS R D. Satellite networks for continuous zonal coverage[J]. ARS Journal, 1961, 31(2): 179-184.
|
12 |
DAI G M, CHEN X Y, WANG M C, et al. Analysis of satellite constellations for the continuous coverage of ground regions[J]. Journal of Spacecraft and Rockets, 2017, 54(6): 1294-1303.
|
13 |
袁仕耿. 多重覆盖的定倾角最佳星座设计[J]. 中国空间科学技术, 1997, 17(4): 11-16, 57.
|
|
YUAN S G. Optimal constellation design with multiple coverage and fixed inclination angle[J]. Chinese Space Science and Technology, 1997, 17(4): 11-16, 57 (in Chinese).
|
14 |
袁仕耿, 杨维廉. 圆轨道星座全球覆盖的充分必要条件[J]. 宇航学报, 1999, 20(3): 82-86.
|
|
YUAN S G, YANG W L. Necessary and sufficient condition of global coverage for constellation using circular orbit[J]. Journal of Astronautics, 1999, 20(3): 82-86 (in Chinese).
|
15 |
龚宇鹏, 张世杰. 偶数重连续覆盖的Walker星座设计方法[J]. 宇航学报, 2022, 43(9): 1163-1175.
|
|
GONG Y P, ZHANG S J. Design method for even-fold continuous-coverage Walker constellation[J]. Journal of Astronautics, 2022, 43(9): 1163-1175 (in Chinese).
|
16 |
LANG T J, ADAMS W S. A comparison of satellite constellations for continuous global coverage[C]∥Mission Design & Implementation of Satellite Constellations. Dordrecht: Springer Netherlands, 1998: 51-62.
|
17 |
LIN C H, HONG Z C. Mission and constellation design for low-cost weather observation satellites[J]. Journal of Spacecraft and Rockets, 2005, 42(1): 118-123.
|
18 |
ZHU X L, GAO Y. Comparison of intelligent algorithms to design satellite constellations for enhanced coverage capability[C]∥2017 10th International Symposium on Computational Intelligence and Design (ISCID). Piscataway: IEEE Press, 2017: 223-226.
|
19 |
TAN C D, XU Y, LUO R D, et al. Low Earth orbit constellation design using a multi-objective genetic algorithm for GNSS reflectometry missions[J]. Advances in Space Research, 2023, 71(5): 2357-2369.
|
20 |
CUI J W, CHEN L H, YU S Q, et al. Global coverage constellation design for Internet of things using NSGAII algorithm[C]∥ Proceedings of the 2022 5th International Conference on Big Data and Internet of Things. New York: ACM, 2022: 88-95.
|
21 |
孙杨雨茜, 乔栋, 张晨, 等. 天基星空背景观测覆盖范围计算方法研究[J]. 中国空间科学技术, 2022, 42(5): 133-143.
|
|
SUNYANG Y Q, QIAO D, ZHANG C, et al. Calculation method of the coverage region for spaceborne observations above the horizon[J]. Chinese Space Science and Technology, 2022, 42(5): 133-143 (in Chinese).
|
22 |
MARCHAND B G, KOBEL C J. Above the horizon satellite coverage with dual-altitude band constraints[J]. Journal of Spacecraft and Rockets, 2009, 46(4): 845-857.
|
23 |
TAKANO A T, MARCHAND B G. Numerical coverage analysis for space-based space situational awareness applications[J]. Journal of Spacecraft and Rockets, 2014, 51(2): 533-544.
|
24 |
SUN Y, WEN C X, ZHANG C, et al. Above-the-horizon coverage for satellite constellations with dual-altitude band constraints using ring-based discretization[J]. Journal of Spacecraft and Rockets, 2022, 60(1): 132-145.
|
25 |
HANSON J M, LINDEN A N. Improved low-altitude constellation design methods[J]. Journal of Guidance, Control, and Dynamics, 1989, 12(2): 228-236.
|
26 |
乔鹏, 吕晓宁, 赵军锁, 等. 应用多星的空间目标跟踪定位算法[J]. 航天器工程, 2021, 30(5): 9-15.
|
|
QIAO P, LYU X N, ZHAO J S, et al. Space target tracking and positioning algorithm using multi-satellites[J]. Spacecraft Engineering, 2021, 30(5): 9-15 (in Chinese).
|
27 |
龚宇鹏. 低轨巨型星座构型设计及覆盖分析方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2022.
|
|
GONG Y P. Research on configuration design and coverage performance analysis of Leo mega-constellation[D]. Harbin: Harbin Institute of Technology, 2022 (in Chinese).
|
28 |
ULYBYSHEV Y. Near-polar satellite constellations for continuous global coverage[J]. Journal of Spacecraft and Rockets, 1999, 36(1): 92-99.
|
29 |
纪凡策. “柯伊柏” 星座介绍及与其他星座对比分析[J]. 国际太空, 2020(12): 27-31.
|
|
JI F C. Introduction of Kuiper constellation and comparative analysis with other constellations[J]. Space International, 2020(12): 27-31 (in Chinese).
|