收稿日期:
2023-08-16
修回日期:
2023-08-30
接受日期:
2023-09-08
出版日期:
2024-06-25
发布日期:
2023-09-20
通讯作者:
曹友
E-mail:936756268@qq.com
基金资助:
Shuaiwen TANG1, You CAO2(), Peng ZHANG3, Jiang JIANG1
Received:
2023-08-16
Revised:
2023-08-30
Accepted:
2023-09-08
Online:
2024-06-25
Published:
2023-09-20
Contact:
You CAO
E-mail:936756268@qq.com
Supported by:
摘要:
激光惯组(LIMU)是复杂装备系统的重要导航单机,其良好的健康状态对于确保系统安全稳定工作具有重要意义。针对激光惯组健康评估中面临的评估指标体系不健全、评估框架不一致、评估指标不独立和评估模型参数不确定问题,在激光惯组工作机理分析的基础上,构建健康评估指标体系,提出基于相关证据推理规则(ERR-DE)的激光惯组健康评估方法。首先,提出转换矩阵的概念,实现了不同评估框架的统一转换。其次,采用变异系数法确定证据权重,采用基于距离的方法确定证据可靠度。然后,基于证据可靠度提出证据融合顺序确定机制,提出基于相对总体相关系数(RTDC)的证据相关性分析方法,并在证据推理规则(ERR)的基础上提出了相关证据推理规则。再者,构建参数优化模型以确定最优评估参数,提高评估精度,进一步对评估算法进行了总结。最后,通过某型激光惯组健康评估案例和对比研究,验证了所提方法的有效性。
中图分类号:
唐帅文, 曹友, 张朋, 姜江. 基于相关证据推理规则的激光惯组健康评估[J]. 航空学报, 2024, 45(12): 329453-329453.
Shuaiwen TANG, You CAO, Peng ZHANG, Jiang JIANG. Health assessment of LIMU based on evidential reasoning rule with dependent evidence[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(12): 329453-329453.
表 6
漂移系数参考值约束条件
约束 | 小 | 中 | 大 |
---|---|---|---|
[-0.03,-0.01] | [-0.01,0.01] | [0.01,0.03] | |
[-0.01,0.01] | [0.01,0.05] | [0.05,0.07] | |
[-0.05,-0.03] | [-0.03,-0.01] | [-0.01,0.01] | |
[0,3] | [ | [ | |
[0,8] | [ | [ | |
[-6,-3] | [-3,3] | [ | |
[-10,-8] | [-8,-6] | [-6,-4] | |
[0,7] | [ | [ | |
[0,2.35] | [2.35,2.45] | [2.45,2.55] | |
[-1,-0.5] | [-0.5,0.5] | [0.5,1] | |
[-0.3,-0.1] | [-0.1,0.1] | [0.1,0.3] | |
[-0.3,-0.1] | [-0.1,0.1] | [0.1,0.3] |
表 11
漂移系数的最优参考值
参考值 | 小 | 中 | 大 |
---|---|---|---|
-0.018 1 | 0.006 8 | 0.014 4 | |
-7×10-5 | 0.027 3 | 0.059 3 | |
-0.04 | -0.023 9 | -0.000 6 | |
1.78 | 5.27 | 9.5 | |
3.57 | 11.3 | 22.5 | |
-4.42 | 1.84 | 4.31 | |
-8.94 | -7.09 | -5.03 | |
3.5 | 7.5 | 8.9 | |
1.2 | 2.4 | 2.5 | |
-0.73 | 0.14 | 0.70 | |
-0.19 | 0.02 | 0.21 | |
-0.14 | 0.01 | 0.18 |
1 | ZHOU Z J, NING P Y, WANG J, et al. An evidential reasoning rule-based quality state assessment method of complex systems considering feature selection[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 2510513. |
2 | CHEN L Y, ZHOU Z J, HU C H, et al. Performance evaluation of complex systems using evidential reasoning approach with uncertain parameters[J]. Chinese Journal of Aeronautics, 2021, 34(1): 194-208. |
3 | ZHURAVLEV V P, PERELVAEV S E, BODUNOV B P, et al. New-generation small-size solid-state wave gyroscope for strapdown inertial navigation systems of unmanned aerial vehicle[C]∥2019 26th Saint Petersburg International Conference on Integrated Navigation Systems (ICINS). Piscataway: IEEE Press, 2019: 1-3. |
4 | 邵世纲, 杨泽萱, 邢冠楠, 等. 国外主要战略导弹系列化发展及技术共用研究[J]. 宇航总体技术, 2017, 1(3): 24-32. |
SHAO S G, YANG Z X, XING G N, et al. Research on serialization and technology sharing of foreign major strategic missiles[J]. Astronautical Systems Engineering Technology, 2017, 1(3): 24-32 (in Chinese). | |
5 | 谢冉. 复杂系统建模方法综述[J]. 现代防御技术, 2020, 48(3): 31-36, 68. |
XIE R. Survey of complex system modeling methods[J]. Modern Defence Technology, 2020, 48(3): 31-36, 68 (in Chinese). | |
6 | 李永满. 某型激光陀螺捷联惯组测试系统设计[D]. 哈尔滨: 哈尔滨工业大学, 2013. |
LI Y M. The test system design on the measurement unit of laser gyro strapdown inertial[D]. Harbin: Harbin Institute of Technology, 2013 (in Chinese). | |
7 | 董春梅, 任顺清, 陈希军, 等. 激光陀螺捷联惯导系统的模观测标定方法[J]. 红外与激光工程, 2018, 47(9): 0917007. |
DONG C M, REN S Q, CHEN X J, et al. Calibration method for the laser gyro strapdown inertial navigation system based on norm-observation[J]. Infrared and Laser Engineering, 2018, 47(9): 0917007 (in Chinese). | |
8 | 王堃, 徐兵华, 孟凡军. 激光捷联惯组失效模式分析及性能评估方法研究[J]. 航空精密制造技术, 2020, 56(6): 11-14. |
WANG K, XU B H, MENG F J. Failure mode analysis and performance evaluation of laser strapdown inertial unit[J]. Aviation Precision Manufacturing Technology, 2020, 56(6): 11-14 (in Chinese). | |
9 | 王易南, 闫杰. 基于卫星和星敏感器的冗余激光惯组在轨标定[J]. 飞行器测控学报, 2016, 35(5): 358-364. |
WANG Y N, YAN J. On-orbit calibration method for redundant inertial measurement units by satellite and star sensors[J]. Journal of Spacecraft TT&C Technology, 2016, 35(5): 358-364 (in Chinese). | |
10 | 王子超, 范会迎, 谢元平, 等. 捷联惯导系统复杂误差参数系统级标定方法[J]. 红外与激光工程, 2022, 51(7): 3788/IRLA20210499. |
WANG Z C, FAN H Y, XIE Y P, et al. System-level calibration method for complex error coefficients of strapdown inertial navigation system[J]. Infrared and Laser Engineering, 2022, 51(7): 3788/IRLA20210499 (in Chinese). | |
11 | 罗睿, 李鹏, 于玲燕. 一种考虑加表不对称误差的冗余惯组标定方法[J]. 中国惯性技术学报, 2023, 31(2): 114-120. |
LUO R, LI P, YU L Y. A calibration method for redundant IMU considering accelerometer asymmetric error[J]. Journal of Chinese Inertial Technology, 2023, 31(2): 114-120 (in Chinese). | |
12 | 吴克雄, 王振华. 基于专家系统和数据驱动的健康评估分析方法[J]. 黑龙江科学, 2019, 10(16): 64-65. |
WU K X, WANG Z H. Health assessment and analysis method based on expert system and data driven[J]. Heilongjiang Science, 2019, 10(16): 64-65 (in Chinese). | |
13 | 陈雷雨, 周志杰, 唐帅文, 等. 融合多元信息的武器装备性能评估方法[J]. 系统工程与电子技术, 2020, 42(7): 1527-1533. |
CHEN L Y, ZHOU Z J, TANG S W, et al. Weapon equipment performance evaluation method with multi-information fusion[J]. Systems Engineering and Electronics, 2020, 42(7): 1527-1533 (in Chinese). | |
14 | WANG J, ZHOU Z J, HU C H, et al. An evidential reasoning rule considering parameter uncertainty[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(2): 1391-1404. |
15 | YANG J B, XU D L. Evidential reasoning rule for evidence combination[J]. Artificial Intelligence, 2013, 205: 1-29. |
16 | 周志杰, 唐帅文, 胡昌华, 等. 证据推理理论及其应用[J]. 自动化学报, 2021, 47(5): 970-984. |
ZHOU Z J, TANG S W, HU C H, et al. Evidential reasoning theory and its applications[J]. Acta Automatica Sinica, 2021, 47(5): 970-984 (in Chinese). | |
17 | ZHOU M, LIU X B, CHEN Y W, et al. Evidential reasoning rule for MADM with both weights and reliabilities in group decision making[J]. Knowledge-Based Systems, 2018, 143: 142-161. |
18 | KONG G L, XU D L, YANG J B, et al. Evidential reasoning rule-based decision support system for predicting ICU admission and in-hospital death of trauma[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(11): 7131-7142. |
19 | ZHANG B C, ZHANG A X, HU G Y, et al. Reliability assessment of train control and management system based on evidential reasoning rule and covariance matrix adaptation evolution strategy algorithm[J]. ISA Transactions, 2021, 116: 129-138. |
20 | TANG S W, ZHOU Z J, HU C H, et al. A new evidential reasoning rule-based safety assessment method with sensor reliability for complex systems[J]. IEEE Transactions on Cybernetics, 2022, 52(5): 4027-4038. |
21 | YANG J B. Rule and utility based evidential reasoning approach for multiattribute decision analysis under uncertainties[J]. European Journal of Operational Research, 2001, 131(1): 31-61. |
22 | 唐帅文, 周志杰, 姜江, 等. 考虑扰动的无人机集群协同态势感知一致性评估[J]. 航空学报, 2020, 41(S2): 724233. |
TANG S W, ZHOU Z J, JIANG J, et al. Consistency assessment of cooperative situation awareness of UAV cluster considering disturbance[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S2): 724233 (in Chinese). | |
23 | LIU P D, LI Y, ZHANG X H, et al. A multiattribute group decision-making method with probabilistic linguistic information based on an adaptive consensus reaching model and evidential reasoning[J]. IEEE Transactions on Cybernetics, 2023, 53(3): 1905-1919. |
24 | ZHAO F J, ZHOU Z J, HU C H, et al. A new evidential reasoning-based method for online safety assessment of complex systems[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 48(6): 954-966. |
25 | DENG J X, DENG Y, CHEONG K H. Combining conflicting evidence based on Pearson correlation coefficient and weighted graph[J]. International Journal of Intelligent Systems, 2021, 36(12): 7443-7460. |
26 | YAO S Y, YANG J B, XU D L, et al. Probabilistic modeling approach for interpretable inference and prediction with data for sepsis diagnosis[J]. Expert Systems with Applications, 2021, 183: 115333. |
27 | ZHOU J, SU X Y, QIAN H. Research on fusion of dependent evidence based on Kendall correlation coefficient[C]∥Proceedings of the 4th International Conference on Computer Science and Application Engineering. New York: ACM, 2020: 1-5. |
28 | JIANG W. A correlation coefficient for belief functions[J]. International Journal of Approximate Reasoning, 2018, 103: 94-106. |
29 | YAGER R R. On the fusion of non-independent belief structures[J]. International Journal of General Systems, 2009, 38(5): 505-531. |
30 | ZHANG P, ZHOU Z J, TANG S W, et al. On the evidential reasoning rule for dependent evidence combination[J]. Chinese Journal of Aeronautics, 2023, 36(5): 306-327. |
31 | SZÉKELY G J, RIZZO M L, BAKIROV N K. Measuring and testing dependence by correlation of distances[J]. The Annals of Statistics, 2007, 35(6): 2769-2794. |
[1] | 张开铭, 王克鲁, 鲁世强, 柳木桐, 钟平, 田野. 基于响应面法的S280超高强度不锈钢的热变形行为[J]. 航空学报, 2023, 44(8): 427293-427293. |
[2] | 贾宝惠, 姜番, 王玉鑫, 王杜. 基于民机维修文本数据的故障诊断方法[J]. 航空学报, 2023, 44(5): 326598-326598. |
[3] | 夏宇航, 王宇. 独立励磁直流发电系统优化控制方法比较[J]. 航空学报, 2023, 44(16): 327975-327975. |
[4] | 曹毅, 孟刚, 居勇健, 徐伟胜. 考虑伴生转动的大行程柔性微定位平台[J]. 航空学报, 2022, 43(7): 425498-425498. |
[5] | 王斌, 王海涛, 王玉峰, 张文武. 热障涂层水助激光扫描加工试验[J]. 航空学报, 2022, 43(4): 525353-525353. |
[6] | 吴宝海, 张阳, 郑志阳, 张莹, 张思琪. 数控加工进给速度参数优化研究现状与展望[J]. 航空学报, 2022, 43(4): 525467-525467. |
[7] | 郭磊, 高远, 辛会. 热障涂层的激光表面改性参数优化和结构设计[J]. 航空学报, 2021, 42(7): 424114-424114. |
[8] | 徐勇, 尹阔, 夏亮亮, 门向南, 曾一畔, 张士宏. 面向航空铝合金薄壁深腔构件的冲击液压成形工艺优化[J]. 航空学报, 2021, 42(10): 524831-524831. |
[9] | 唐帅文, 周志杰, 姜江, 曹友, 陈媛, 叶燕清. 考虑扰动的无人机集群协同态势感知一致性评估[J]. 航空学报, 2020, 41(S2): 724233-724233. |
[10] | 吴爱国, 巩志浩. 基于改进鸽群算法的气动捕获轨道优化[J]. 航空学报, 2020, 41(9): 324292-324292. |
[11] | 房冠成, 贾大鹏, 刘毅飞, 刘海涛. 基于飞行参数数据挖掘的军机健康评估技术[J]. 航空学报, 2020, 41(6): 523458-523458. |
[12] | 刘一鸣, 盛文, 胡冰, 张磊. 相控阵雷达长时跟踪波束调度与波形优化策略[J]. 航空学报, 2020, 41(3): 323519-323519. |
[13] | 楚中毅, 赖咪, 燕少博. 欠驱动指爪机构的被动弹性元件参数优化设计[J]. 航空学报, 2018, 39(1): 421370-421370. |
[14] | 刘凯, 曹毅, 周睿, 葛姝翌, 丁锐. 二自由度平板折展柔性铰链的分析及优化[J]. 航空学报, 2017, 38(2): 420317-420326. |
[15] | 张健, 张德虎. 高空长航时太阳能无人机总体设计要点分析[J]. 航空学报, 2016, 37(S1): 1-7. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学