航空学报 > 2020, Vol. 41 Issue (3): 323519-323519   doi: 10.7527/S1000-6893.2019.23519

相控阵雷达长时跟踪波束调度与波形优化策略

刘一鸣, 盛文, 胡冰, 张磊   

  1. 空军预警学院 防空预警装备系, 武汉 430019
  • 收稿日期:2019-09-23 修回日期:2019-12-13 出版日期:2020-03-15 发布日期:2019-12-12
  • 通讯作者: 刘一鸣 E-mail:ls.liu_yiming@whu.edu.cn
  • 基金资助:
    军内预研基金

Long time tracking beam scheduling and waveform optimization strategy for phased array radar

LIU Yiming, SHENG Wen, HU Bing, ZHANG Lei   

  1. Air Defense Early Warning Equipment Department, Air Force Early Warning Academy, Wuhan 430019, China
  • Received:2019-09-23 Revised:2019-12-13 Online:2020-03-15 Published:2019-12-12
  • Supported by:
    Military Advanced Research Fund

摘要: 针对相控阵雷达多目标跟踪波束调度和波形参数优化控制的问题,本文提出了一种基于马尔可夫决策过程(MDP)的相控阵雷达跟踪波束调度与波形参数优化策略,该方法以无迹卡尔曼滤波(UKF)算法为基础来估计目标的状态。首先将本文的序列决策问题建模为马尔可夫决策过程,定义了资源的效费比和长期回报率,然后与当前实际跟踪误差综合考虑作为MDP的回报函数,进而给出了调度的优化模型,最后将长时决策问题转化为动态规划算法结构进行求解,并且提出了一种并行混合遗传粒子群优化算法来求解各决策时刻的最优策略。仿真结果表明了长时策略的先进性以及寻优算法的优越性,与传统的短时策略相比,跟踪精度可提高11.17%。

关键词: 相控阵雷达, 波束调度, 波形参数优化, 马尔可夫决策过程, 无迹卡尔曼滤波(UKF), 长期回报率, 混合遗传粒子群优化

Abstract: Aiming at the problem of multi-target tracking beam scheduling and waveform parameter optimization control of phased array radar, a strategy of tracking beam scheduling and waveform parameter optimization based on Markov Decision Process (MDP) is proposed. The Unscented Kalman Filter (UKF) algorithm is used to estimate the state of the target. Firstly, the sequence decision problem of this paper is modeled as a Markov decision process, and the cost-effectiveness ratio and the long-term return rate of the resource are defined. Then, the current actual tracking error is intigrated as the reward function of MDP, and the optimization model of joint scheduling is given. Finally, the long-term decision problem is transformed into a dynamic programming algorithm structure, and a parallel hybrid genetic particle swarm optimization algorithm is proposed to solve the optimal strategy at each decision time. The simulation result shows the advanced nature of the strategy and the superiority of the optimization algorithm. Compared with the traditional "short-term" strategy, the tracking accuracy can be improved by 11.17%.

Key words: phased array radar, beam scheduling, waveform parameter optimization, Markov decision process, Unscented Kalman Filter (UKF), long-term return rate, hybrid genetic particle swarm optimization

中图分类号: