喻思琪, 张小红, 郭斐, 李昕, 潘林, 马福建
收稿日期:
2018-04-16
修回日期:
2018-06-02
出版日期:
2019-03-15
发布日期:
2019-03-28
通讯作者:
张小红
E-mail:xhzhang@sgg.whu.edu.cn
基金资助:
YU Siqi, ZHANG Xiaohong, GUO Fei, LI Xin, PAN Lin, MA Fujian
Received:
2018-04-16
Revised:
2018-06-02
Online:
2019-03-15
Published:
2019-03-28
Supported by:
摘要: 全球卫星定位系统(GNSS)增强系统能提供全天候无间断的卫星导航信号,可以辅助飞机进行进近。本文介绍了全球卫星导航系统进近着陆系统的基本组成、工作原理和功能特点,并对国内外研究进展进行了阐述。针对GNSS进近研究中的热点问题,重点论述了地基增强系统(GBAS)、星基增强系统(SBAS)、用户自主完好性监测(RAIM)等技术的发展现状,指出了GNSS进近技术实际工程应用仍然存在的问题,探讨了GNSS进近技术未来的发展方向。
中图分类号:
喻思琪, 张小红, 郭斐, 李昕, 潘林, 马福建. 卫星导航进近技术进展[J]. 航空学报, 2019, 40(3): 22200-022200.
YU Siqi, ZHANG Xiaohong, GUO Fei, LI Xin, PAN Lin, MA Fujian. Recent advances in precision approach based on GNSS[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(3): 22200-022200.
[1] 中国民用航空发展第十三个五年规划[EB/OL].(2016-12-29)[2018-04-15].http://www.caac.gov.cn/XXGK/XXGK/FZGH/201704/P020170405610579468910 pdf,2017. The 13th Five Year Plan for China's Civil Aviation Development[EB/OL].(2016-12-19)[2018-04-15].http://www.caac.gov.cn/XXGK/XXGK/FZGH/201704/P020170405610579468910.pdf,2017(in Chinese). [2] 2016年民航行业发展统计公报[EB/OL].(2017-05-18)[2018-04-15].http://www.caac.gov.cn/XXGK/XXGK/TJSJ/201705/P020170508406147909874.pdf. Civil Aviation Industry Development Statistics Bulletin 2016[EB/OL]. (2017-05-18)[2018-04-15].http://www.caac.gov.cn/XXGK/XXGK/TJSJ/201705/P020170508406147909874.pdf (in Chinese). [3] BRAFF R, SHIVELY C. GPS integrity channel[J]. Navigation, 1985, 32(4):334-350. [4] PARKINSON B, SPILKER J. Global positioning system:Theory and applications[M]. Reston, VA:AIAA, 1996:81-114. [5] LEE Y. Analysis of range and position comparison methods as a means to provide GPS integrity in the user receiver[C]//Proceedings of the 42rd Annual Meeting, 1986:1-4. [6] PARKINSON B W, AXELRAD P. Autonomous GPS integrity monitoring using the pseudorange residual[J]. Navigation, 1988, 35(2):255-274. [7] BRAFF R. Description of the FAA's local area augmentation system (LAAS)[J]. Navigation, 1997, 44(4):411-423. [8] ENGE P. Local area augmentation of GPS for the precision approach of aircraft[J]//Proceedings of the IEEE, 1999, 87(1):111-132. [9] RIFE J H. Cylindrical overbounding for quadratic integrity monitors with non-Gaussian inputs[J]. GPS Solutions, 2018, 22(1):27. [10] FONTANELLA D, PAONNI M, EISSFELLER B. A novel evil waveforms threat model for new generation GNSS signals:Theoretical analysis and performance[C]//The Workshop on Satellite Navigation Technologies & European Workshop on GNSS Signals & Signal Processing. Piscataway, NJ:IEEE Press, 2011:1-8. [11] ZHI W, WANG Z, ZHU Y, et al. Availability prediction method for EGNOS[J]. GPS Solutions, 2016, 21(3):1-13. [12] CHOY S, KUCKARTZ J, DEMPSTER A G, et al. GNSS satellite-based augmentation systems for Australia[J]. GPS Solutions, 2017, 21(3):1-14. [13] LI L, WANG H, JIA C, et al. Integrity and continuity allocation for the RAIM with multiple constellations[J]. GPS Solutions, 2017, 21(4):1-11. [14] SAITO S, SUNDA S, LEE J, et al. Ionospheric delay gradient model for GBAS in the Asia-Pacific region[J]. GPS Solutions, 2017, 21(4):1937-1947. [15] WU Y, LIU X, LIU W, et al. Long-term behavior and statistical characterization of BeiDou signal-in-space errors[J]. GPS Solutions, 2017, 21(1):1-16. [16] GE Y, WANG Z, ZHU Y. Reduced ARAIM monitoring subset method based on satellites in different orbital planes[J]. GPS Solutions, 2017, 21(4):1443-1456. [17] Program Management Committee (PMC)[EB/OL].[2018-05-01]https://www.rtca.org/content/program-managementcommittee. [18] International Civil Aviation Organization (ICAO). Aeronauticla telecommunications in annex 10 to the convention on international civil aviation international standards and recommended practices (SARPs)[S]. Montreal:ICAO, 2007:3-67. [19] Federal Aviation Administration. Global positioning system wide area augmentation system (WAAS) performance standard[S]. Beijing:Department of Transportation, 1998:28. [20] 邵搏, 耿永超, 丁群, 等. 国际星基增强系统综述[J]. 现代导航, 2017, 8(3):157-161. SHAO B. GENG Y C. DING Q, et al. Summarize of international satellite based augmentation system[J]. Modern Navigation, 2017, 8(3):157-161(in Chinese). [21] WAAS quick facts[EB/OL]. (2018-03-01)[2018-04-15].https://www.faa.gov/about/office_org/headquarters_offices/ato/service_units/techops/navservices/gnss/library/factsheets/media/WAAS_QFSheet.pdf. [22] 陈俊平, 胡一帆, 张益泽, 等. 北斗星基增强系统性能提升初步评估[J]. 同济大学学报(自然科学版), 2017, 45(7):1075-1082. CHEN J P, HU Y F. ZHANG Y Z. et al. Preliminary evaluation of BDS SBAS performance[J]. Journal of Tongji University (Natural Science), 2017, 45(7):1075-1082(in Chinese). [23] PHELTS R E, SHALLBERG K, WALTER T, et al. WAAS signal deformation monitor performance:Beyond the ICAO threat model[C]//Proceedings of the ION 2017 Pacific PNT Meeting, 2017:713-724. [24] BLANCH J, WALTER T, ENGE P. A clock and ephemeris algorithm for dual frequency SBAS[C]//Proceedings of International Technical Meeting of the Satellite Division of the Institute of Navigation, 2012:2513-2519. [25] SHALLBERG K, SHENG F. WAAS measurement processing, current design and potential improvements[C]//Position, Location and Navigation Symposium. Piscataway, NJ:IEEE Press, 2008:253-262. [26] BLANCH J, WALTER T, ENGE P, et al. Evaluation of a covariance-based clock and ephemeris error bounding algorithm for SBAS[C]//Proceedings of International Technical Meeting of The Satellite Division of the Institute of Navigation, 2014:3270-3276. [27] MISHRA S, GUPTA R, GANESHAN A S. An algorithm for estimation and separation of ephemeris and clock errors in SBAS[J]. Acta Astronautica, 2009, 65(7-8):1149-1157. [28] WALTER T, BLANCH J. Improved user position monitor for WAAS[J]. Navigation, 2017, 64(1):165-175. [29] Federal Aviation Administration (FAA). Specification for the wide area augmentation system (WAAS) archived 2008-10-04 at the wayback machine:FAA-E-2892b[S]. Beijing:Department of Transportation, 2001. [30] Federal Aviation Administration (FAA). Press release FAA announces major milestone for wide area augmentation system (WAAS)[EB/OL].[2018-04-15].https://www.faa. gov/news/press_releases/news_story. cfm?contentKey=4006. [31] BANG E, LEE J, WALTER T, et al. Preliminary availability assessment to support single-frequency SBAS development in the Korean region[J]. GPS Solutions, 2016, 20(3):1-14. [32] 卢璐, 马银虎, 陈海龙. 俄罗斯卫星导航增强系统SDCM现状与发展[C]//中国卫星导航学术年会, 2014. LU L, MA Y H, CHEN H L. The current status and development of SDCM[C]//China Satellite Navigation Conference, 2014(in Chinese). [33] 吴云, 杨鑫春, 陈慧, 等. 多系统多频率的EGNOS系统完备性模拟分析[J]. 武汉大学学报(信息科学版), 2012, 37(3):269-273. WU Y, YANG X C, CHEN H, et al. Simulation and analysis of EGNOS system's integrity under multi-system with multi-frequency[J]. Geomatics and Information Science of Wuhan University, 2012, 37(3):269-273(in Chinese). [34] 楼益栋, 郑福, 龚晓鹏, 等. QZSS系统在中国区域增强服务性能评估与分析[J]. 武汉大学学报(信息科学版), 2016, 41(3):298-303. LOU Y D, ZHEN F, GONG X P, et al. Evaluation of QZSS system augmentation service performance in China region[J]. Geomatics and Information Science of Wuhan University, 2016, 41(3):298-303(in Chinese). [35] 毛琪, 麻智超, 卢满宏, 等. GAGAN系统在北京地区定位性能测试与评估[J]. 遥测遥控, 2017, 38(4):53-57. MAO Q, MA Z C, LU M H, et al. Evaluation of GAGAN system positioning performance in Beijing area[J]. Journal of Telemetry, Tracking and Command, 2017, 38(4):53-57(in Chinese). [36] PHELTS R E, ALTSHULER E, WALTER T, et al. Validating nominal bias error limits using 4 years of WAAS signal quality monitoring data[C]//Proceedings of the ION 2015 Pacific PNT Meeting, 2015:956-963. [37] BLANCH J, WALTER T, PHELTS R E, et al. Near term improvements to WAAS availability[C]//Proceedings of International Technical Meeting of The Institute of Navigation, 2013:71-77. [38] AVERIN S, DVORKIN V, KARUTIN, et al. Russian system for differential correction and monitoring:A concept and results of the first phase of development[C]//Proceedings of International Technical Meeting of the Satellite Division of The Institute of Navigation, 2006:2103-2110. [39] GNSS增强系统在民航中的应用[EB/OL]. (2015-08-19)[2018-04-15].http://www.cannews.com.cn/2015/0819/131949.shtml. Application of GNSS enhancement system in civil avi-ation[EB/OL].(2015-08-19)[2018-04-15].http://www.cannews.com.cn/2015/0819/131949.shtml. [40] LI L, SHI H, JIA C, et al. Position-domain integrity risk-based ambiguity validation for the integer bootstrap estimator[J]. GPS Solutions, 2018, 22(2):39. [41] DOGRA S, WRIGHT J, HANSEN J. Sea-based JPALS relative navigation algorithm development[C]//Proceedings of International Technical Meeting of the Satellite Division of the Institute of Navigation, 2005:2871-2881. [42] XIE G. Optimal on-airport monitoring of the integrity of GPS-based landing systems[D]. Palo Alto:Stanford University, 2004. [43] NDILI A N. Robust GPS autonomous signal quality monitoring[D]. Palo Alto:Stanford University, 1998. [44] PHELTS R E. Multi-correlator techniques for robust mitigation of threats to GPS signal quality[D]. Palo Alto:Stanford University, 2001. [45] MITELMAN A M. Signal quality monitoring for GPS augmentation systems[D]. Palo Alto:Stanford University, 2005. [46] DATTA-BARUA S, WALTER T, PULLEN S, et al. Using WAAS ionospheric data to estimate LAAS short baseline gradients[C]//Proceedings of ION National Technical Meeting, 2002. [47] ENE A, QIU D, LUO M, et al. A comprehensive ionosphere storm data analysis method to support LAAS threat model development[C]//Proceedings of ION National Technical Meeting, 2005. [48] LEE J, PULLEN S, DATTA-BARUA S, et al. Assessment of Nominal Ionosphere Spatial Decorrelation for LAAS[C]//Position, Location, and Navigation Symposium. Piscataway, NJ:IEEE Press, 2006:506-514. [49] LEE J, DATTA-BARUA S, ZHANG G, et al. Observations of low-elevation ionospheric anomalies for ground-based augmentation of GNSS[J]. Radio Science, 2016, 46(6):1-11. [50] PULLEN S, PARK Y S, ENGE P. Impact and mitigation of ionospheric anomalies on ground-based augmentation of GNSS[J]. Radio Science, 2009, 44(1):1-10. [51] MAYER C, BELABBAS B, JAKOWSKI N, et al. Ionospheric threat space model assessment for GBAS[C]//Proceedings of ION GNSS, 2009:1082-1090. [52] TERKILDSEN M. GBAS ionospheric threat model validation:Characterising ionospheric storms in the Australian region[C]//Cospar Scientific Assembly, 2010. [53] KIM M, CHOI Y, JUN H, et al. GBAS ionospheric threat model assessment for category I operation in the Korean region[J]. GPS Solutions, 2015, 19(3):443-456. [54] LUO M, PULLEN S, DATTA-BARUA S, et al. LAAS study of slow-moving ionosphere anomalies and their potential impacts[C]//Proceeding of Institute of Navigation GNSS, 2013:2337-2349. [55] MCGRAW G. Generalized divergence-free carrier smoothing with applications to dual frequency differential GPS[J]. Navigation, 2009, 56(2):115-122. [56] JIANG Y, MILNER C, MACABIAU C. Code carrier divergence monitoring for dual-frequency GBAS[J]. GPS Solutions, 2016, 21(2):1-13. [57] LEE J, LUO M, PULLEN S, et al. Position-domain geometry screening to maximize LAAS availability in the presence of ionosphere anomalies[C]//Proceedings of the ION GNSS, 2006:393-408. [58] TOWNSEND B R, FENTON P C. A practical approach to the reduction of pseudorange multipath errors in a L1 GPS receiver[C]//Proceedings of International Technical Meeting of the Satellite Division of the Institute of Navigation, 1994:143-148. [59] SAYIM I, PERVAN B. Overbounding non-zero mean Gaussian ranging error for navigation integrity of LAAS[C]//International Conference on Recent Advances in Space Technologies. Piscataway, NJ:IEEE Press, 2005:404-410. [60] OBER P B, HARRIMAN D. On the use of multi constellation-RAIM for aircraft approaches[C]//Proceedings of International Technical Meeting of the Satellite Division of the Institute of Navigation, 2006:2587-2596. [61] LEE J, PULLEN S, ENGE P. Sigma overbounding using a position domain method for the local area augmentaion of GPS[J]. IEEE Transactions on Aerospace & Electronic Systems, 2009, 45(4):1262-1274. [62] RIFE J, PULLEN S, PERVAN B. Core overbounding and its implications for LAAS Integrity[C]//Proceedings of ION GNSS, 2013. [63] SHIVELY C A, BRAFF R. An overbound concept for pseudorange error from the LAAS ground facility[C]//Proceedings of the Annual Meeting of the ION, 2000:661-671. [64] RONALD B, CURTIS S. A method of over bounding ground based augmentation system (GBAS) heavy tail error distributions[J]. Journal of Navigation, 2005, 58(1):83-104. [65] VARNER C. Gaussian and mixed gaussian methods of LAAS overbounding[C]//Proceedings of the 2002 National Technical Meeting of The Institute of Navigation, 2002:531-538 [66] HATCH R. The synergism of GPS code and carrier measurements[C]//Proceedings of the 3rd International Geodetic Symposium on Satellite Doppler Positioning, 1982:1213-1231. [67] YU S, GUO F, ZHANG X H, et al. A new method for GNSS multipath mitigation with an adaptive frequency domain filter[J]. Sensors, 2018, 18:2514. [68] AZARBAD M R, MOSAVI M R. A new method to mitigate multipath error in single-frequency GPS receiver with wavelet transform[J]. GPS Solutions, 2014, 18(2):189-198. [69] ZHANG Y, BARTONE C. Multipath mitigation in the frequency domain[C]//Position Location and Navigation Symposium. Piscataway, NJ:IEEE Press, 2004:486-495. [70] WALTER T, BLANCH J, ENGE P. Evaluation of signal in space error bounds to support aviation integrity[J]. Navigation, 2010, 57(2):101-113. [71] LIANG H, GAO G X, WALTER T. GPS signal-in-space integrity performance evolution in the last decade:Data mining 400,000,000 navigation messages from a global network of 400 receivers[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(4):2932-2946 [72] JAN S S, GEBRE-EGZIABHER D, WALTER T, et al. Improving GPS-based landing system performance using an empirical barometric altimeter confidence bound[J]. IEEE Transactions on Aerospace & Electronic Systems, 2008, 44(1):127-146. [73] CHIOU T Y. Design of a Doppler-aided GPS navigation system for weak signals caused by strong ionospheric[M]. Palo Alto:Stanford University, 2010. [74] PULLEN S, GAO G, TEDESCHI C, et al. The impact of uninformed RF interference on GBAS and potential mitigations[C]//Proceedings of the International Technical Meeting of the ION, 2012. [75] FAA Aircraft Certification Service. Federal aviation administration, airborne supplemental navigation equipment using the global positioning system (GPS):Technical Standard Order (TSO)-129[S]. Beijing:Department of Transportation, 1992 [76] 刘准, 陈哲. GPS自主式完整性检测技术研究[J]. 北京航空航天大学学报, 2003, 29(8):673-676. LIU Z, CHEN Z. Study on GPS receiver autonomous integrity monitoring[J]. Journal of Beijing University of Aeronautics & Astronautics, 2003, 29(8):673-676(in Chinese). [77] 孟领坡. 飞机进近着陆精密卫星导航关键技术研究[D]. 长沙:国防科学技术大学, 2011. MENG L P. Key technology research on aircraft approach precise satellite navigation[D]. Changsha:National University of Defense Technology, 2011(in Chinese). [78] STURZA M. Navigation system integrity monitoring using redundant measurements[J]. Navigation, 1988, 35(4):483-501. [79] BROWN G. A baseline GPS RAIM scheme and a note on the equivalence of three RAIM methods[J]. Navigation, 1992, 39(3):301-316. [80] 王永超, 黄智刚, 孙国良. 三种导航卫星故障识别方法的等价性研究[J]. 遥测遥控, 2006, 27(1):51-55. WANG Y C, HUANG Z G, SUN G L. Research on the equipment among three satellite fault identification algorithms[J]. Journal of Telemetry, Tracking and Command, 2006, 27(1):51-55(in Chinese). [81] WANG S H J. GNSS receiver autonomous integrity monitoring with a dynamic model[J]. Navigation, 2007, 60(2):247-263 [82] YANG Y, XU J. GNSS receiver autonomous integrity monitoring (RAIM) algorithm based on robust estimation[J]. Geodesy and Geodynamics, 2016, 7(2):117-123. [83] BHATTA-CHARYYA S, GEBRE-EGZIABHER D. Kalman filter-based RAIM for GNSS receivers[J]. IEEE Transactions on Aerospace & Electronic Systems, 2015, 51(3):2444-2459. [84] 宋建材, 侯春萍, 薛桂香. 基于EKF的GNSS接收机自主完好性监测方法[J]. 天津大学学报(自然科学与工程技术版), 2017, 50(4):405-410. SONG J C, HOU C P, XUE G X. GNSS receiver autonomous integrity monitoring based on EKF[J]. Journal of Tianjin University(Science and Technology), 2017, 50(4):405-410(in Chinese). [85] BROWN R G. Receiver integrity monitoring global positioning system:Theory and application[M]. Reston, VA:AIAA, 1996:150-155. [86] 陈金平, 许其凤, 刘广军. GPS RAIM水平定位误差保护限值算法分析[J]. 测绘科学技术学报, 2001, 18(S1):1-3. CHENG J P, XU Q F, LIU G J. Analysis of different algorithms for GPS RAIM HPL[J]. Journal of Institute of Surveying, 2001, 18(S1):1-3(in Chinese). [87] TEUNISSEN P J. Quality control in integrated navigation systems[J]. IEEE Aerospace & Electronic Systems Magazine, 2002, 5(7):35-41. [88] 吴有龙, 王晓鸣, 杨玲, 等. GNSS/INS紧组合导航系统自主完好性监测分析[J]. 测绘学报, 2014, 43(8):786-795. WU Y L, WANG X M, YANG L, et al. Autonomous integrity monitoring of tightly coupled GNSS/INS navigation system[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(8):786-795(in Chinese). [89] 徐博, 肖伟, 刘文祥, 等. 基于加权奇偶矢量的伪卫星辅助北斗定位完好性监测算法[J]. 测绘通报, 2016(11):9-11. XU B, XIAO W, LIU W X. Auxiliary BeiDou integrity monitoring algorithm based on pseudo-satellite-weighted parity vector[J]. Bulletin of Surveying and Mapping, 2016(11):9-11(in Chinese). [90] 许龙霞, 李孝辉. 基于接收机钟差的GPS完好性自主检测算法[J]. 宇航学报, 2011, 32(3):537-542. XU L X, LI X H. A receiver clock bias-based GPS RAIM algorithm[J]. Journal of Astronautics, 2011, 32(3):537-542(in Chinese). [91] BORIS S P, SAMUEL P P, JOCK R C. A multiple hypothesis approach to satellite navigation integrity[J]. Navigation, 1998, 45(1):61-71. [92] BLANCH J, ENE A, WALTER T, et al. An optimized multiple hypothesis RAIM algorithm for vertical guidance[C]//Proceedings of the ION GNSS+, 2007:2924-2933. [93] ENE A. Multiple hypothesis RAIM with real-time FDE and forecasted availability for combined Galileo-GPS vertical guidance[C]//Proceedings of European Navigation Conference, 2007:28-31. [94] FAA-GEAS-Panel. Phase Ⅱ of the GNSS evolutionary architecture study[EB/OL].(2008-12-01)[2018-04-15].http://www.faa.gov/about/office_org/headquarters_offices/ato/service_units/techops/navservices/gnss/library/documents/media/GEASPhasⅡ_final.pdf. [95] JOERGER M, PERVAN B. Solution separation and Chi-Squared ARAIM for fault detection and exclusion[C]//Position, Location and Navigation Symposium, 2014, 2014:294-307. [96] OREJAS M, SKALICKY J, ZIEGLER U, et al. Implementation and testing of clustered ARAIM in a GPS/Galileo receiver[C]//Proceedings of the 29th International Technical Meeting of The Satellite Division of the Institute of Navigation, 2016:1360-1367. [97] 李彬, 吴云, 李征航. GNSS接收机自主完备性监测高级算法的有效性验证[J]. 武汉大学学报(信息科学版), 2015, 40(6):800-804. LI B, WU Y, LI Z H. Validation of the GNSS advanced ARAIM algorithm[J]. Geomatics and Information Science of Wuhan University, 2015, 40(6):800-804(in Chinese). [98] Working Group C[EB/OL]. (2012-02-01)[2018-04-15].https://www.gps.gov/policy/cooperation/europe/2013/working-group-c/. [99] Working Group C[EB/OL]. (2012-02-11)[2018-04-15].https://www.gps.gov/policy/cooperation/europe/2015/working-group-c/. [100] Working Group C[EB/OL]. (2012-02-26)[2018-04-15].https://www.gps.gov/policy/cooperation/europe/2016/working-group-c/. [101] 王式太. 基于M估计的GNSS接收机自主完好性监测研究[D]. 北京:中国地质大学(北京), 2017. WANG S T. The study of GNSS receiver autonomous integrity monitoring based on M-estimation[D]. Beijing:China University of Geosciences (Beijing), 2017(in Chinese). [102] 仝海波, 张国柱. 改进M估计的抗多个粗差定位解算方法[J]. 测绘学报, 2014, 43(4):366-371. TONG H B, ZHANG G Z. Robust positioning algorithm with modified M-estimation for multiple outlier[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(4):366-371(in Chinese). [103] TSAI Y H, YANG W C, CHANG F R, et al. Using multi-frequency for GPS positioning and receiver autonomous integrity monitoring[C]//IEEE International Conference on Control Applications. Piscataway, NJ:IEEE Press, 2004:205-210. [104] 杨林, 吴德伟, 戚君宜, 等. 北斗/GPS兼容接收机双频RAIM算法研究[J]. 弹箭与制导学报, 2015(2):145-149. YANG L, WU D W, QI J Y, et al. Research on RAIM algorithm for dual-frequency BD/GPS compatible receiver[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2015(2):145-149(in Chinese). [105] 郭婧, 陆明泉, 崔晓伟, 等. 三频GNSS接收机的RAIM算法研究[J]. 宇航学报, 2011, 32(8):1734-1739. GUO J, LU M Q, CUI X W, et al. Research on RAIM algorithm for triple-frequency GNSS receiver[J]. Journal of Astronautics, 2011, 32(8):1734-1739(in Chinese). [106] BROWN R G. Solution of the two-failure GPS RAIM problem under worst-case bias conditions:Parity space approach[J]. Navigation, 1997, 44(4):425-431. [107] LEE Y, BRAFF R, FERNOW J, et al. GPS and Galileo with RAIM or WAAS for vertically guided approaches[C]//Proceedings of the Institute of Navigation GNSS, 2005:1801-1825. [108] 郭婧, 崔晓伟, 陆明泉, 等. 支持垂直引导进近的多星座RAIM算法[J]. 清华大学学报(自然科学版), 2011, 51(2):156-160. GUO J, CUI X W, LU M Q, et al. Multi-constellation RAIM for approach with vertical guidance[J]. Journal of Tsinghua University (Science and Technology), 2011, 51(2):156-160(in Chinese). [109] HWANG P Y, BROWN R G. NIORAIM integrity monitoring performance in simultaneous two-fault satellite scenarios[C]//Proceedings of the 18th International Technical Meeting of the Satellite Division of The Institute of Navigation, 2005:1760-1771. [110] LIU J, LU M, CUI X, et al. Theoretical analysis of RAIM in the occurrence of simultaneous two-satellite faults[J]. IET Radar Sonar & Navigation, 2007, 1(2):92-97. [111] ZHANG M, ZHANG J, ZHU Y, Enhancements of the dichotomy based RAIM[C]//Proceedings of the 22nd International Technical Meeting of The Satellite Division of the Institute of Navigation, 2009:2783-2790. [112] SCHROTH G, ENE A, BLANCH J, et al. Failure detection and exclusion via range consensus[C]//Proceedings of the European Navition Conference, 2008. [113] NIKIFOROV I. Advanced RAIM algorithms for safe navigation based on the constrained GLR test[C]//American Control Conference. Piscataway, NJ:IEEE Press, 2007:1840-1845. [114] KIHARA M, OKADA T. A satellite selection method and accuracy for the global positioning system[J]. Navigation, 1984, 31(1):8-20. [115] WARD L, AEROSPACE B, CORPORATION T. GPS receiver satellite/antenna selection algorithm for the stanford gravity probe B relativity mission[C]//Proceedings of the National Technical Meeting of the Institute of Navigation, 1999:541-550. [116] PARK C W. Precise relative navigation using augmented CDGPS[D]. Palo Alto:Stanford University, 2001. [117] SPAZIO A, UNDERTAKING G J. Performance and visibility analysis for different Galileo/GPS receivers with the GRANADA Environment and Navigation Simulator[C]//Proceedings of ENCGNSS Conference, 2005. [118] ZHANG M, ZHANG J. A fast satellite selection algorithm:Beyond four satellites[J]. IEEE Journal of Selected Topics in Signal Processing, 2009, 3(5):740-747. [119] DUANGDUEN R, HASSAN A K. A multi-constellations satellite selection algorithm for integrated global navigation satellite systems[J]. Journal of Intelligent Transportation Systems, 2009, 13(3):127-141. [120] MENG F, ZHU B, WANG S. A new fast satellite selection algorithm for BDS-GPS receivers[C]//Signal Processing Systems (SiPS) Workshop on 2013 IEEE. Piscataway, NJ:IEEE Press, 2013. [121] WALTER T, BLANCH J, KROPP V. Satellite selection for Multi-Constellation SBAS[C]//Proceedings of the 29th International Technical Meeting of The Satellite Division of the Institute of Navigation, 2016:1350-1359. [122] 国务院办公厅. 国务院关于促进民航业发展的若干意见[EB/OL]. (2012-07-12)[2018-04-15].http://www.gov.cn/zwgk/2012-07/12/content_2181497.htm. State Council. Several opinions of the state council on promoting the development of civil aviation industry[EB/OL]. (2012-07-12)[2018-04-15].http://www.gov.cn/zwgk/2012-07/12/content_2181497.htm. [123] 周兵. 北斗卫星导航系统发展现状与建设构想[J]. 无线电工程, 2016, 46(4):1-4. ZHOU B. Current development status and design proposal for BeiDou satellite navigation system[J]. Radio Engineering, 2016, 46(4):1-4(in Chinese). |
[1] | 李家祥, 程建华, 李亮, 那志博, 贾春. GBAS对流层异常完好性监测参数研究[J]. 航空学报, 2024, 45(7): 328817-328817. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学