1 |
RIBEIRO P, AKHAVAN H, TETER A, et al. A review on the mechanical behaviour of curvilinear fibre composite laminated panels[J]. Journal of Composite Materials, 2014, 48(22): 2761-2777.
|
2 |
宋桂林, 王显峰, 赵聪, 等. 规则回转体自动铺丝轨迹规划与丝束增减[J]. 航空学报, 2020, 41(11): 423704.
|
|
SONG G L, WANG X F, ZHAO C, et al. Fiber placement trajectory planning and tows increase or decrease algorithm for revolution body[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(11): 423704 (in Chinese).
|
3 |
孔斌, 顾杰斐, 陈普会, 等. 变刚度复合材料结构的设计、制造与分析[J]. 复合材料学报, 2017, 34(10): 2121-2133.
|
|
KONG B, GU J F, CHEN P H, et al. Design, manufacture and analysis of variable-stiffness composite structures[J]. Acta Materiae Compositae Sinica, 2017, 34(10): 2121-2133 (in Chinese).
|
4 |
蔡立成, 彭啸, 汪海晋, 等. 铺放工艺参数对预浸料丝束曲线铺贴质量的影响[J]. 复合材料学报, 2021, 38(6): 1795-1808.
|
|
CAI L C, PENG X, WANG H J, et al. Influence of laying process parameters on curve trajectory placement quality of prepreg tow[J]. Acta Materiae Compositae Sinica, 2021, 38(6): 1795-1808 (in Chinese).
|
5 |
靳子昂, 韩振宇, 项宇, 等. 变角度自动铺丝制造缺陷特性及影响因素的研究进展[J]. 机械工程学报, 2022, 58(23): 164-177.
|
|
JIN Z A, HAN Z Y, XIANG Y, et al. Research progress on defect characteristics and influencing factors of variable angle fiber placement[J]. Journal of Mechanical Engineering, 2022, 58(23): 164-177 (in Chinese).
|
6 |
段沐枫, 秦田亮, 沈裕峰, 等. 自动铺丝最小间隙路径规划与复合材料锥壳结构制造[J]. 航空学报, 2019, 40(2): 522423.
|
|
DUAN M F, QIN T L, SHEN Y F, et al. Minimum gap layup algorithms for automatic fiber placement and manufacture of conic composite structure[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(2): 522423 (in Chinese).
|
7 |
FAYAZBAKHSH K, PASINI D, LESSARD L, et al. Design and manufacturing of optimum variable stiffness laminates[C]∥ Proceedings of the 19th International Conference on Composite Materials (ICCM19). Montreal: Concordia Centre for Composites, 2013: FAY81186.
|
8 |
ARIAN NIK M, FAYAZBAKHSH K, PASINI D, et al. Optimization of variable stiffness composites with embedded defects induced by automated fiber placement[J]. Composite Structures, 2014, 107: 160-166.
|
9 |
JEGLEY D, TATTING B, GÜRDAL Z. Optimization of elastically tailored tow-placed plates with holes[C]∥Proceedings of the 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2003.
|
10 |
BLOM A W, LOPES C S, KROMWIJK P J, et al. A theoretical model to study the influence of tow-drop areas on the stiffness and strength of variable-stiffness laminates[J]. Journal of Composite Materials, 2009, 43(5): 403-425.
|
11 |
杨竣博. 考虑工艺的复合材料层合结构变刚度铺层优化设计[D]. 西安: 西北工业大学, 2017: 57-62.
|
|
YANG J B. Variable stiffness lay-up optimization of composite laminated structures[D]. Xi’an: Northwestern Polytechnical University, 2017: 57-62 (in Chinese).
|
12 |
钱金源, 赵筱彤, 王小平, 等. 变角度铺丝构件内嵌缺陷精确定位算法[J]. 宇航材料工艺, 2021, 51(5): 72-78.
|
|
QIAN J Y, ZHAO X T, WANG X P, et al. An algorithm for accurate location of embedded defects in variable angle fiber placement component[J]. Aerospace Materials & Technology, 2021, 51(5): 72-78 (in Chinese).
|
13 |
WU C, GÜRDAL Z, STARNES J. Structural response of compression-loaded, tow-placed, variable stiffness panels[C]∥ Proceedings of the 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2002.
|
14 |
居相文, 肖军, 王东立, 等. 考虑纤维面外起伏的变刚度层合板优化策略研究[J]. 复合材料学报, 2023, 40(3): 1729-1739.
|
|
JU X W, XIAO J, WANG D L, et al. Study on the optimization strategy of variable stiffness laminate considering out-of-plane fiber waviness[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1729-1739 (in Chinese).
|
15 |
FAYAZBAKHSH K, ARIAN NIK M, PASINI D, et al. Defect layer method to capture effect of gaps and overlaps in variable stiffness laminates made by automated fiber placement[J]. Composite Structures, 2013, 97: 245-251.
|
16 |
ARRANZ S, SOHOULI A, SULEMAN A. Buckling optimization of variable stiffness composite panels for curvilinear fibers and grid stiffeners[J]. Journal of Composites Science, 2021, 5(12): 324.
|
17 |
CARVALHO J, SOHOULI A, SULEMAN A. Fundamental frequency optimization of variable angle tow laminates with embedded gap defects[J]. Journal of Composites Science, 2022, 6(2): 64-83.
|
18 |
FALCÓ O, MAYUGO J A, LOPES C S, et al. Variable-stiffness composite panels: As-manufactured modeling and its influence on the failure behavior[J]. Composites Part B: Engineering, 2014, 56: 660-669.
|
19 |
FALCÓ O, LOPES C S, NAYA F, et al. Modelling and simulation of tow-drop effects arising from the manufacturing of steered-fibre composites[J]. Composites Part A: Applied Science and Manufacturing, 2017, 93: 59-71.
|
20 |
卫宇璇, 张明, 刘佳, 等. 基于自动铺放技术的变刚度复合材料层合板固化变形特性[J]. 复合材料学报, 2022, 39(5): 2460-2469.
|
|
WEI Y X, ZHANG M, LIU J, et al. Process-induced deformation characteristics of variable stiffness composite laminates based on automatic placement technology[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2460-2469 (in Chinese).
|
21 |
CAO Z L, DONG M J, SHI Q H, et al. Research on buckling characteristics and placement processability of variable stiffness open-hole laminates[J]. Composites Part C: Open Access, 2022, 7: 100233.
|
22 |
GÜRDAL Z, OLMEDO R. In-plane response of laminates with spatially varying fiber orientations—Variable stiffness concept[J]. AIAA Journal, 1993, 31(4): 751-758.
|
23 |
WALDHART C. Analysis of tow-placed, variable stiffness laminates[D]. Blacksburg: Virginia Poly-Technic Institute and State University, 1996: 62-76.
|
24 |
冉庆波, 肖鸿, 杨富鸿, 等. 含孔曲面自动铺丝轨迹规划算法[J]. 航空学报, 2022, 43(9): 425602.
|
|
RAN Q B, XIAO H, YANG F H, et al. Trajectory planning algorithm for automatic wire laying on perforated surface[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9): 425602 (in Chinese).
|
25 |
牛雪娟, 杨涛, 杜宇, 等. 变刚度纤维曲线铺放复合材料层合板的有限元建模和拉伸特性分析[J]. 宇航材料工艺, 2014, 44(4): 19-24.
|
|
NIU X J, YANG T, DU Y, et al. Finite element modeling and tensile properties analysis of curvelinear fiber-placed variable-stiffness composite laminates[J]. Aerospace Materials & Technology, 2014, 44(4): 19-24 (in Chinese).
|
26 |
赵聪. 铺丝过程纤维面内屈曲机理及其对构件力学性能影响规律研究[D]. 南京: 南京航空航天大学, 2017: 87-88.
|
|
ZHAO C. Formation mechanism of In-plane fiber waviness and its effect on performance of composites in automated fiber placement[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017: 87-88 (in Chinese).
|
27 |
张雅会, 陈普会, 孔斌. 变刚度复合材料平板与开孔板屈曲性能试验验证与数值仿真[J]. 复合材料学报, 2023, 40(4): 2377-2389.
|
|
ZHANG Y H, CHEN P H, KONG B. Experimental verification and numerical simulation of buckling behavior of variable stiffness composite plates and open-hole plates[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2377-2389 (in Chinese).
|
28 |
顾杰斐, 陈普会, 孔斌, 等. 考虑制造因素的变刚度层合板的抗屈曲铺层优化设计[J]. 复合材料学报, 2018, 35(4): 866-875.
|
|
GU J F, CHEN P H, KONG B, et al. Layup optimization for maximum buckling load of variable-stiffness laminates considering manufacturing factors[J]. Acta Materiae Compositae Sinica, 2018, 35(4): 866-875 (in Chinese).
|
29 |
MAROUENE A, BOUKHILI R, CHEN J, et al. Effects of gaps and overlaps on the buckling behavior of an optimally designed variable-stiffness composite lamina-tes—A numerical and experimental study[J]. Composite Structures, 2016, 140: 556-566.
|
30 |
XIA Z H, ZHOU C W, YONG Q L, et al. On selection of repeated unit cell model and application of unified periodic boundary conditions in micro-mechanical analysis of composites[J]. International Journal of Solids and Structures, 2006, 43(2): 266-278.
|
31 |
SUN C T, VAIDYA R S. Prediction of composite properties from a representative volume element[J]. Composites Science and Technology, 1996, 56(2): 171-179.
|
32 |
李梦佳. Z-pin增强复合材料的力学性能研究[D]. 南京: 南京航空航天大学, 2019: 25-27.
|
|
LI M J. Research on the mechanical properties of Z-pinned composites[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019: 25-27 (in Chinese).
|
33 |
刘振东, 郑锡涛, 范雯静, 等. 固化残余应力对无人机复合材料机翼强度的影响[J]. 航空学报, 2022, 43(6): 526117.
|
|
LIU Z D, ZHENG X T, FAN W J, et al. Effect of process-induced residual stress on strength of UAV composite wing[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 526117 (in Chinese).
|
34 |
潘光, 鲁江锋, 沈克纯. 复合材料圆柱壳体水下非线性屈曲数值分析[J]. 哈尔滨工程大学学报, 2015, 36(9): 1159-1164.
|
|
PAN G, LU J F, SHEN K C. Nonlinear numerical buckling analysis of composite underwater cylindrical shell[J]. Journal of Harbin Engineering University, 2015, 36(9): 1159-1164 (in Chinese).
|
35 |
彭艺琳, 马玉娥, 赵阳, 等. 铝锂合金加筋壁板剪切屈曲性能[J]. 航空学报, 2020, 41(11): 423729.
|
|
PENG Y L, MA Y, ZHAO Y, et al. Shear buckling performance of Al-Li alloy stiffened panels[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(11): 423729 (in Chinese).
|
36 |
ZHANG Y H, KONG B, GU J F, et al. Experimental investigation on the buckling and post-buckling behavior of variable stiffness laminates[J]. Thin-Walled Structures, 2023, 184: 110450.
|
37 |
LOPES C S, CAMANHO P P, GÜRDAL Z, et al. Progressive failure analysis of tow-placed, variable-stiffness composite panels[J]. International Journal of Solids and Structures, 2007, 44(25-26): 8493-8516.
|